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MTMamba++: Enhancing Multi-Task Dense
Scene Understanding via Mamba-Based

Decoders
Baijiong Lin, Weisen Jiang, Pengguang Chen, Shu Liu, and Ying-Cong Chen

Abstract—Multi-task dense scene understanding, which trains a model for multiple dense prediction tasks, has a wide range of
application scenarios. Capturing long-range dependency and enhancing cross-task interactions are crucial to multi-task dense
prediction. In this paper, we propose MTMamba++, a novel architecture for multi-task scene understanding featuring with a
Mamba-based decoder. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM
handles long-range dependency by leveraging state-space models, while CTM explicitly models task interactions to facilitate
information exchange across tasks. We design two types of CTM block, namely F-CTM and S-CTM, to enhance cross-task interaction
from feature and semantic perspectives, respectively. Extensive experiments on NYUDv2, PASCAL-Context, and Cityscapes datasets
demonstrate the superior performance of MTMamba++ over CNN-based, Transformer-based, and diffusion-based methods while
maintaining high computational efficiency. The code is available at https://github.com/EnVision-Research/MTMamba.

Index Terms—Multi-task learning, dense scene understanding, Mamba.

✦

1 INTRODUCTION

MULTI-task dense scene understanding, which trains
a single model to simultaneously handle multiple

pixel-wise prediction tasks (e.g., semantic segmentation,
depth estimation, surface normal estimation, and object
boundary detection), has become increasingly important in
many computer vision applications [1], such as autonomous
driving [2], healthcare [3], and robotics [4]. The success of
multi-task dense prediction hinges on addressing two fun-
damental challenges: (i) modeling long-range spatial rela-
tionships to capture global context information, which is es-
sential for pixel-wise prediction tasks; (ii) enhancing cross–
task interactions to facilitate knowledge sharing among
different tasks, which is crucial to multi-task learning.

Existing multi-task dense prediction approaches can be
broadly categorized by their architectural design. CNN-
based methods [5], [6] employ convolutional operations
in decoders for task-specific predictions but primarily
capture local features, struggling with modeling long-
range dependencies and global context understanding [7],
[8]. Transformer-based methods [9]–[14] employ attention
mechanisms [15] to better capture global context and
demonstrate improved performance. However, they suffer
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from quadratic computational complexity with respect to
sequence length [16], [17], making them computationally
prohibitive for high-resolution dense prediction tasks.

To address these limitations, we propose MTMamba++,
a novel Mamba-based architecture that achieves effective
and efficient multi-task dense scene understanding. MT-
Mamba++ introduces two key components based on state
space models (SSMs) [18], [19] in the decoder: (i) The
self-task Mamba (STM) block, inspired by [20], captures
global context information for each task by leveraging the
long-range modeling capabilities of SSMs with linear com-
putational complexity; (ii) The cross-task Mamba (CTM)
block enables effective knowledge exchange across tasks
through two variants: F-CTM for feature-level interaction
and S-CTM for semantic-level interaction. The S-CTM in-
troduces a novel cross SSM (CSSM) mechanism that mod-
els relationships between task-specific and shared feature
sequences, providing more effective task interaction than
simple feature fusion approaches used in F-CTM.

As the overall framework shown in Figure 1, MT-
Mamba++ features a three-stage Mamba-based decoder that
progressively refines multi-task predictions. Each stage con-
tains an ECR (expand, concatenate, and reduce) block that
upscales features and fuses them with encoder features,
followed by STM and CTM blocks for task-specific learning
and cross-task interaction. This design effectively captures
long-range dependencies and enhances cross-task interac-
tion while maintaining computational efficiency.

We evaluate MTMamba++ on three standard multi-task
dense prediction benchmark datasets, namely NYUDv2 [21],
PASCAL-Context [22], and Cityscapes [23]. Quantitative re-
sults demonstrate that MTMamba++ significantly surpasses
previous methods, including CNN-based, Transformer-
based, and diffusion-based appoarch. Moreover, com-
prehensive efficiency analysis shows that MTMamba++
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Fig. 1. Overview of the general architecture for MTMamba++ and its preliminary version MTMamba [24], presenting with semantic segmentation
(abbreviated as “Semseg”) and depth estimation (abbreviated as “Depth”) tasks. The pretrained encoder (Swin-Large Transformer [25] is used here)
is responsible for extracting multi-scale generic visual representations from the input RGB image. In the decoder, the ECR (expand, concatenate,
and reduce) block is designed to upsample the feature maps and fuse them with high-level features derived from the encoder. Following this, the
task-specific representations captured by the self-task Mamba (STM) blocks are further refined in the cross-task Mamba (CTM) block. This process
ensures that each task benefits from the comprehensive feature set provided by the shared and task-specific components. Each task has its own
head to generate the final predictions. We develop two types of CTM blocks and prediction heads, respectively. MTMamba++ and MTMamba utilize
different CTM blocks and prediction heads as their default configurations. The details of each part are comprehensively introduced in Section 3.

achieves state-of-the-art performance while maintaining
high computational efficiency. Notably, our experiments
demonstrate that SSM-based architectures are more effec-
tive and efficient than attention-based for multi-task dense
prediction tasks. Additionally, qualitative studies show that
MTMamba++ generates superior visual results with greater
accuracy in detail, sharper boundaries, and more accurate
detection in small objects compared to existing approaches.

In summary, the main contributions of this paper are
four-fold:

• We propose MTMamba++, a novel multi-task architec-
ture based on state space models (SSMs) for multi-task
dense scene understanding. It contains a novel Mamba-
based decoder, effectively modeling long-range spatial
relationships and achieving cross-task correlation;

• In the decoder, we design two types of cross-task
Mamba (CTM) blocks, namely F-CTM and S-CTM, to
enhance cross-task interaction from feature and seman-
tic perspectives, respectively;

• In the S-CTM block, we propose a novel cross SSM
(CSSM) to model the relationship between two se-
quences based on the SSM mechanism;

• We evaluate MTMamba++ on three benchmark
datasets, including NYUDv2, PASCAL-Context, and
Cityscapes. Quantitative results demonstrate the supe-
riority of MTMamba++ on multi-task dense prediction
over previous methods while maintaining high com-
putational efficiency. Qualitative evaluations show that
MTMamba++ generates precise predictions.

A preliminary version of this work appeared in a con-
ference paper [24]. Compared with the previous conference
version, we propose a novel cross SSM (CSSM) mecha-
nism that enables capturing the relationship between two
sequences based on the SSM mechanism. By leveraging
CSSM, we design a novel cross-task Mamba (CTM) block
(i.e., S-CTM) to better achieve cross-task interaction. We also
introduce a more effective and lightweight prediction head.
Based on these innovations, MTMamba++ largely outper-
forms MTMamba [24]. Moreover, we extend our experi-

ments to investigate the effectiveness of MTMamba++ on
a new multi-task scene understanding benchmark dataset,
i.e., Cityscapes [23]. We also provide more results and
analysis to understand the proposed MTMamba++ model.

The rest of the paper is organized as follows. In Sec-
tion 2, we review some related works. In Section 3, we
present a detailed description of the various modules
within our proposed MTMamba++ model. In Section 4, we
quantitatively and qualitatively evaluate the proposed MT-
Mamba++ model on three benchmark datasets (NYUDv2
[21], PASCAL-Context [22], and Cityscapes [23]). Finally, we
make conclusions in Section 5.

2 RELATED WORKS

2.1 Multi-Task Learning

Multi-task learning (MTL) is a learning paradigm that aims
to jointly learn multiple related tasks using a single model
[26], [27]. Current MTL research mainly focuses on multi-
objective optimization [28]–[33] and network architecture
design [5], [6], [9]–[14], [34], [35]. In multi-task visual scene
understanding, most existing works focus on designing
architecture [1], especially developing specific modules in
the decoder to facilitate knowledge exchange among dif-
ferent tasks. For instance, based on CNN, Xu et al. [5]
introduce PAD-Net, which integrates an effective multi-
modal distillation module aimed at enhancing informa-
tion exchange among various tasks within the decoder.
MTI-Net [6] is a complex multi-scale and multi-task CNN
architecture that facilitates information distillation across
various feature scales. As the convolution operation only
captures local features [7], recent approaches [9]–[14] de-
velop Transformer-based decoders to grasp global context
by attention mechanism [15]. For example, InvPT [9] is a
Transformer-based multi-task architecture that employs an
effective UP-Transformer block for multi-task feature inter-
action at different feature scales. MQTransformer [10] uses a
cross-task query attention module in the decoder to enable
effective task association and information communication.
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These works demonstrate the significance of long-range
dependency modeling and the enhancement of cross-task
correlation for multi-task dense scene understanding. Dif-
ferent from existing methods, we propose a novel multi-
task architecture derived from the SSM mechanism [36] to
capture global information better and promote cross-task
interaction.

2.2 State Space Models

State space models (SSMs) are a mathematical framework
for characterizing dynamic systems, capturing the dynamics
of input-output relationships via a hidden state. SSMs have
found broad applications in various fields such as reinforce-
ment learning [37], computational neuroscience [38], and
linear dynamical systems [39]. Recently, SSMs have emerged
as an alternative mechanism to model long-range depen-
dencies in a manner that maintains linear complexity with
respect to sequence length. Compared with the convolu-
tion operation, which excels at capturing local dependence,
SSMs exhibit enhanced capabilities for modeling long se-
quences. Moreover, in contrast to attention mechanism [15],
which incurs quadratic computational costs with respect to
sequence length [16], [17], SSMs are more computation- and
memory-efficient.

To improve the expressivity and efficiency of SSMs,
many different structures have been proposed. Gu et al.
[19] propose structured state space models (S4) to enhance
computational efficiency by decomposing the state matrix
into low-rank and normal matrices. Many follow-up works
attempt to improve the effectiveness of S4. For instance, Fu
et al. [40] propose a new SSM layer called H3 to reduce the
performance gap between SSM-based networks and Trans-
formers in language modeling. Mehta et al. [41] introduce
a gated state space layer leveraging gated units to enhance
the models’ expressive capacity.

Recently, Gu and Dao [36] propose a new SSM-based
architecture termed Mamba, which incorporates a new SSM
called S6. This SSM is an input-dependent selection mecha-
nism derived from S4. Mamba has demonstrated superior
performance over Transformers on various benchmarks,
such as language modeling [36], [42], [43], graph reasoning
[44], [45], medical image analysis [46], [47], and image classi-
fication [20], [48]. Different from existing research efforts on
Mamba, which mainly focus on single-task settings, in this
paper, we consider a more challenging multi-task setting
and propose a novel cross-task Mamba module to capture
inter-task dependence.

3 METHODOLOGY

In this section, we begin with the foundational knowledge
of state space models (Section 3.1) and provide an overview
of the proposed MTMamba++ in Section 3.2. Next, we delve
into a detailed exploration of each component in the decoder
of MTMamba++, including the encoder in Section 3.3, three
types of block in the decoder (i.e., the ECR block in Section
3.4, the STM block in Section 3.5, and the CTM block in
Section 3.6), and the prediction head in Section 3.7.

3.1 Preliminaries
SSMs [18], [19], [36], derived from the linear systems theory
[39], map an input sequence x(t) ∈ R to an output sequence
y(t) ∈ R though a hidden state h ∈ RN using a linear
ordinary differential equation:

h′(t) = Ah(t) +Bx(t), (1)

y(t) = C⊤h(t) +Dx(t), (2)

where A ∈ RN×N is the state transition matrix, B ∈ RN

and C ∈ RN are projection matrices, and D ∈ R is the skip
connection. Equation (1) defines the evolution of the hidden
state h(t), while Equation (2) specifies that the output is
derived from a linear transformation of the hidden state h(t)
combined with a skip connection from the input x(t).

Given that continuous-time systems are not compatible
with digital computers and the discrete nature of real-
world data, a discretization process is essential. This process
approximates the continuous-time system with a discrete-
time one. Let ∆ ∈ R be a discrete-time step size. Equations
(1) and (2) are discretized as

ht = Āht−1 + B̄xt, (3)

yt = C̄⊤ht +Dxt, (4)

where xt = x(∆t), and

Ā = exp(∆A),

B̄ = (∆A)−1(exp(∆A)− I) ·∆B ≈ ∆B,

C̄ = C. (5)

S4 [19] treats A,B,C, and ∆ as trainable parameters and
optimizes them by gradient descent. However, these param-
eters do not explicitly depend on the input sequence, which
can lead to suboptimal extraction of contextual information.
To address this limitation, Mamba [36] introduces a new
SSM, namely S6. As illustrated in Figure 4(a), it incorporates
an input-dependent selection mechanism that enhances the
system’s ability to discern and select relevant information
contingent upon the input sequence. Specifically, B,C, and
∆ are defined as functions of the input x ∈ RB×L×C .
Following the computation of these parameters, Ā, B̄, and
C̄ are calculated via Equation (5). Subsequently, the output
sequence y ∈ RB×L×C is computed by Equations (3) and
(4), thereby improving the contextual information extrac-
tion. Without specific instructions, in this paper, S6 [36] is
used in the SSM mechanism.

3.2 Overall Architecture
An overview of MTMamba++ is illustrated in Figure 1.
It contains three components: an off-the-shelf encoder, a
Mamba-based decoder, and task-specific prediction heads.
Specifically, the encoder is shared across all tasks and plays
a pivotal role in extracting multi-scale generic visual rep-
resentations from the input image. The decoder consists
of three stages, each of which progressively expands the
spatial dimensions of the feature maps. This expansion is
crucial for dense prediction tasks, as the resolution of the
feature maps directly impacts the accuracy of the pixel-
level predictions [9]. Each decoder stage is equipped with
the ECR block designed to upsample the feature and inte-
grate it with high-level features derived from the encoder.
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Fig. 2. (a) Illustration of the ECR (expand, concatenate, and reduce) block. It is responsible for upsampling the task feature and fusing it with
the multi-scale feature from the encoder. More details are provided in Section 3.4. (b) Overview of the self-task Mamba (STM) block, which is
responsible for learning discriminant features for each task. Its core module SS2D is derived from [20]. As shown in Figure 4(b), SS2D extends 1D
SSM operation (introduced in Section 3.1) to process 2D images. More details about STM are put in Section 3.5.

Following this, the STM block is employed to capture the
long-range spatial relationship for each task. Additionally,
the CTM block facilitates feature enhancement for each task
by promoting knowledge exchange across different tasks.
We design two types of CTM block, namely F-CTM and S-
CTM, as introduced in Section 3.6. In the end, a prediction
head is used to generate the final prediction for each task.
We introduce two types of head, called DenseHead and
LiteHead, as described in Section 3.7.

MTMamba++ and our preliminary version MTMamba
[24] have a similar architecture. The default configuration
for MTMamba++ utilizes the S-CTM block and LiteHead,
while the default configuration for MTMamba employs the
F-CTM block and DenseHead.

3.3 Encoder

The encoder in MTMamba++ is shared across different tasks
and is designed to learn generic multi-scale visual features
from the input RGB image. As an example, we consider
the Swin Transformer [25], which segments the input image
into non-overlapping patches. Each patch is treated as a
token, and its feature representation is a concatenation of
the raw RGB pixel values. After patch segmentation, a
linear layer is applied to project the raw token into a C-
dimensional feature embedding. The projected tokens then
sequentially pass through four stages of the encoder. Each
stage comprises multiple Swin Transformer blocks and a
patch merging layer. The patch merging layer is specifically
utilized to downsample the spatial dimensions by a factor
of 2× and expand the channel numbers by a factor of
2×, while the Swin Transformer blocks are dedicated to
learning and refining the feature representations. Finally,
for an input image with dimensions H × W × 3, where H
and W denote the height and width, the encoder generates
hierarchical feature representations at four different scales,
i.e., H

4 ×W
4 ×C, H

8 ×W
8 ×2C, H

16×
W
16×4C, and H

32×
W
32×8C.

3.4 ECR Block

The ECR (expand, concatenate, and reduce) block is respon-
sible for upsampling the feature and aggregating it with the

encoder’s feature. As illustrated in Figure 2(a), it contains
three steps. For an input feature, ECR block first 2× up-
samples the feature resolution and 2× reduces the channel
number by a linear layer and the rearrange operation. Then,
the feature is fused with the high-level feature from the
encoder through skip connections. Fusing these features is
crucial for compensating the loss of spatial information that
occurs due to downsampling in the encoder. Finally, a 1× 1
convolutional layer is used to reduce the channel number.
Consequently, the ECR block facilitates the efficient recov-
ery of high-resolution details, which is essential for dense
prediction tasks that require precise spatial information.

3.5 STM Block

The self-task Mamba (STM) block is responsible for learning
task-specific features. As illustrated in Figure 2(b), its core
module is the 2D-selective-scan (SS2D) module, which is
derived from [20]. The SS2D module is designed to address
the limitations of applying 1D SSMs (as discussed in Section
3.1) to process 2D image data. As depicted in Figure 4(b),
it unfolds the feature map along four distinct directions,
creating four unique feature sequences, each of which is
then processed by an SSM. The outputs from four SSMs are
subsequently added and reshaped to form a comprehensive
2D feature map.

For an input feature, the STM block operates through
several stages: it first employs a linear layer to expand the
channel number by a controllable expansion factor α. A
convolutional layer with a SiLU activation function is used
to extract local features. The SS2D operation models the
long-range dependencies within the feature map. An input-
dependent gating mechanism is integrated to adaptively
select the most salient representations derived from the
SS2D process. Finally, another linear layer is applied to
reduce the expanded channel number, yielding the output
feature. Therefore, the STM block effectively captures both
local and global spatial information, which is essential for
the accurate learning of task-specific features in dense scene
understanding tasks.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3593621

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 31,2025 at 09:50:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

LN

Linear

C
onv
3x3

SS2D

LN

Linear

Linear

task-specific feature block

LN

Linear

C
onv
3x3

SS2D

LN

task-shared fusion block

C
onv
1x1

C
onv
3x3

LN

Linear

C
onv
3x3

C
SS2D

LN

Linear

Linear

task-shared
fusion block

task-specific feature block

（b) S-CTM.（a) F-CTM.

Linear

Fig. 3. Illustration of two types of cross-task Mamba (CTM) block. (a) F-CTM contains a task-shared fusion block for generating a global
representation zsh and T task-specific feature blocks (only one is illustrated) for obtaining each task’s feature zt. Each task’s output is the
aggregation of task-specific feature zt and global feature zsh weighted by a task-specific gate gt. More details about F-CTM are provided in
Section 3.6.1. (b) Similar to F-CTM, S-CTM generates a global feature by a fusion block and processes each task’s feature with a task-specific
block (only one is illustrated). Differently, S-CTM achieves semantic-aware cross-task interaction in the cross SS2D (CSS2D) module, which is
shown in Figure 4(d). More details about S-CTM and CSS2D are provided in Section 3.6.2.

3.6 CTM Block

While the STM block excels at learning distinctive repre-
sentations for individual tasks, it fails to establish inter-task
connections, which are essential for enhancing the perfor-
mance of MTL. To address this limitation, we propose the
novel cross-task Mamba (CTM) block, depicted in Figure 3,
which facilitates information exchange across various tasks.
We develop two types of CTM blocks, called F-CTM and
S-CTM, from different perspectives to achieve cross-task
interaction.

3.6.1 F-CTM: Feature-Level Interaction

As shown in Figure 3(a), F-CTM comprises a task-shared
fusion block and T task-specific feature blocks, where T is
the number of tasks. It inputs T features and outputs T
features. For each task, the input features have a channel
dimension of C.

The task-shared fusion block first concatenates all task
features, resulting in a concatenated feature with a channel
dimension of TC . This concatenated feature is then fed
into a linear layer to transform the channel dimension from
TC to αC , aligning it with the dimensions of the task-
specific features from the task-specific feature blocks, where
α is the expansion factor introduced in Section 3.5. The
transformed feature is subsequently processed through a
sequence of operations “Conv - SiLU - SS2D” to learn a
global representation zsh, which contains information from
all tasks.

In the task-specific feature block, each task indepen-
dently processes its own feature representation zt through
its own sequence of operations “Linear - Conv - SiLU -
SS2D”. Then, we use a task-specific and input-dependent
gate gt to aggregate the task-specific representation zt and
the global representation zsh as gt × zt + (1− gt)× zsh.

Hence, F-CTM allows each task to adaptively integrate
the cross-task representation with its own feature, promot-
ing information sharing and interaction among tasks. The
use of input-dependent gates ensures that each task can
selectively emphasize either its own feature or the shared
global representation based on the input data, thereby en-
hancing the model’s ability to learn discriminative features
in a multi-task learning context.

3.6.2 S-CTM: Semantic-Aware Interaction

While feature fusion in F-CTM is an effective way to interact
with information, it may not be sufficient to capture all the
complex relationships across different tasks, especially in
multi-task scene understanding where the interactions be-
tween multiple pixel-level dense prediction tasks are highly
dynamic and context-dependent. Thus, we propose S-CTM
to achieve semantic-aware interaction.

As shown in Figure 3(b), S-CTM contains a task-shared
fusion block and T task-specific feature blocks. The fusion
block first concatenates all task features and then passes the
concatenated feature through two convolution layers to gen-
erate the global representation, which contains knowledge
across all tasks. The task-specific feature block in S-CTM is
adapted from the STM block by replacing the SS2D with a
novel cross SS2D (CSS2D). The additional input of CSS2D is
from the task-shared fusion block.

As discussed in Section 3.1, SSM only models the internal
relationship within a single input sequence, but it does not
capture the interactions between two different sequences. To
address this limitation, we propose the cross SSM (CSSM)
to model the relationship between the task-specific feature
sequence (blue) and the task-shared feature sequence (red),
as illustrated in Figure 4(c). CSSM receives two sequences
as input and outputs one sequence. The task-shared feature
sequence is used to generate the SSMs parameters (i.e.,
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Fig. 4. (a) Illustration of SSM. Given an input sequence, SSM first computes the input-dependent parameters (i.e., B,C, and ∆) and then calculates
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which extends 1D SSMs to process 2D images. It unfolds the 2D feature map along four directions, generating four different feature sequences,
each of which is then fed into an SSM. The four outputs are aggregated and folded to the 2D feature. (c) Illustration of the proposed cross SSM
(CSSM), which enables modeling the relationships between two input sequences based on the SSM mechanism. In CSSM, one input sequence
is used to compute (i.e., B,C, and ∆) and the other input is considered as the query. The output of CSSM is computed via Equations (3) and (4).
More details about CSSM are provided in Section 3.6. (d) Overview of the proposed cross SS2D (CSS2D). It inputs two 2D feature maps, scans
them along four directions to generate four pairs of feature sequences, and then passes each pair through a CSSM. The outputs of CSSMs are
subsequently added and reshaped to form a final 2D output feature. The details of CSS2D are put in Section 3.6.2.

B,C, and ∆), and the task-specific feature sequence is
considered as the query input x. The output is computed via
Equations (3) and (4). Consequently, by leveraging the SSM
mechanism, CSSM can capture the interactions between
two input sequences at the semantic level. Furthermore,
we extend SS2D as CSS2D, as shown in Figure 4(d). This
module takes two 2D input features, expands them along
four directions to generate four pairs of feature sequences,
and feeds each pair into a CSSM. The outputs from these
sequences are subsequently aggregated and reshaped to
form a 2D output feature.

Therefore, compared with F-CTM, S-CTM can better
learn context-aware relationships because of the CSSM
mechanism. CSSM can explicitly and effectively model long-
range spatial relationships within two sequences, allowing
S-CTM to understand the interactions between task-specific
features and the global representation, which is critical
for multi-task learning scenarios. In contrast, the feature
fusion in F-CTM makes it difficult to capture the complex
dependencies inherent across tasks.

3.7 Prediction Head
As shown in Figure 1, after the decoder, the size of task-
specific feature is H

4 × W
4 ×C. Each task has its own predic-

tion head to generate its final prediction. We introduce two
types of prediction heads as follows.

3.7.1 DenseHead
DenseHead is inspired by [49] and is used in our prelim-
inary version MTMamba [24]. Specifically, each head con-
tains a patch expand operation and a final linear layer. The

patch expanding operation, similar to the one in the ECR
block (as shown in Figure 2(a)), performs 4× upsampling
to restore the resolution of the feature maps to the original
input resolution H × W . The final linear layer is used to
project the feature channels to the task’s output dimensions
and output the final pixel-wise prediction.

3.7.2 LiteHead
In DenseHead, upsampling is performed first, which can
lead to a significant computational cost. Hence, we in-
troduce a more simple, lightweight, and effective head
architecture, called LiteHead. Specifically, it consists of a
3×3 convolutional layer, followed by a batch normalization
layer, a ReLU activation function, and a final linear layer that
projects the feature channels onto the task’s output dimen-
sions. Subsequently, the feature is simply interpolated to
align with the input resolution and then used as the output.
Thus, LiteHead is much more computationally efficient than
DenseHead. Note that since each task has its own head, the
overall computational cost reduction is linearly related to
the number of tasks.

4 EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate the proposed MTMamba++ in multi-task dense scene
understanding.

4.1 Experimental Setups
4.1.1 Datasets
Following [9], [11], [12], we conduct experiments on
three multi-task dense prediction benchmark datasets:
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TABLE 1
Comparison with state-of-the-art methods on NYUDv2 (left) and PASCAL-Context (right) datasets. ↑ (↓) indicates that a higher (lower) result

corresponds to better performance. The best and second best results are highlighted in bold and underline, respectively.

Method Semseg Depth Normal Boundary
mIoU↑ RMSE↓ mErr↓ odsF↑

CNN-based decoder
Cross-Stitch [54] 36.34 0.6290 20.88 76.38
PAP [55] 36.72 0.6178 20.82 76.42
PSD [56] 36.69 0.6246 20.87 76.42
PAD-Net [5] 36.61 0.6270 20.85 76.38
MTI-Net [6] 45.97 0.5365 20.27 77.86
ATRC [57] 46.33 0.5363 20.18 77.94

Transformer-based decoder
InvPT [9] 53.56 0.5183 19.04 78.10
InvPT++ [11] 53.85 0.5096 18.67 78.10
TaskPrompter [12] 55.30 0.5152 18.47 78.20
MQTransformer [10] 54.84 0.5325 19.67 78.20
TSP-Transformer [13] 55.39 0.4961 18.44 77.50
MLoRE [14] 55.96 0.5076 18.33 78.43

Diffusion-based decoder
TaskDiffusion [34] 55.65 0.5020 18.43 78.64

Mamba-based decoder
MTMamba [24] 55.82 0.5066 18.63 78.70
MTMamba++ 57.01 0.4818 18.27 79.40

Method Semseg Parsing Saliency Normal Boundary
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

CNN-based decoder
ASTMT [51] 68.00 61.10 65.70 14.70 72.40
PAD-Net [5] 53.60 59.60 65.80 15.30 72.50
MTI-Net [6] 61.70 60.18 84.78 14.23 70.80
ATRC [57] 62.69 59.42 84.70 14.20 70.96
ATRC-ASPP [57] 63.60 60.23 83.91 14.30 70.86
ATRC-BMTAS [57] 67.67 62.93 82.29 14.24 72.42

Transformer-based decoder
InvPT [9] 79.03 67.61 84.81 14.15 73.00
InvPT++ [11] 80.22 69.12 84.74 13.73 74.20
TaskPrompter [12] 80.89 68.89 84.83 13.72 73.50
MQTransformer [10] 78.93 67.41 83.58 14.21 73.90
TSP-Transformer [13] 81.48 70.64 84.86 13.69 74.80
MLoRE [14] 81.41 70.52 84.90 13.51 75.42

Diffusion-based decoder
TaskDiffusion [34] 81.21 69.62 84.94 13.55 74.89

Mamba-based decoder
MTMamba [24] 81.11 72.62 84.14 14.14 78.80
MTMamba++ 81.94 72.87 85.56 14.29 78.60

(i) NYUDv2 [21] contains a number of indoor scenes, in-
cluding 795 training images and 654 testing images. It
consists of four tasks: 40-class semantic segmentation (Sem-
seg), monocular depth estimation (Depth), surface nor-
mal estimation (Normal), and object boundary detection
(Boundary). (ii) PASCAL-Context [22], originated from the
PASCAL dataset [50], includes both indoor and outdoor
scenes and provides pixel-wise labels for tasks like semantic
segmentation, human parsing (Parsing), and object bound-
ary detection, with additional labels for surface normal
estimation and saliency detection tasks generated by [51].
It contains 4,998 training images and 5,105 testing images.
(iii) Cityscapes [23] is an urban scene understanding dataset.
It has two tasks (19-class semantic segmentation and dispar-
ity estimation) with 2,975 training and 500 testing images.

4.1.2 Implementation Details

We use the Swin-Large Transformer [25] pretrained on the
ImageNet-22K dataset [52] as the encoder. The expansion
factor α is set to 2 in both STM and CTM blocks. Following
[9], [11], [12], we resize the input images of NYUDv2,
PASCAL-Context, and Cityscapes datasets as 448 × 576,
512 × 512, and 512 × 1024, respectively, and use the same
data augmentations including random color jittering, ran-
dom cropping, random scaling, and random horizontal flip-
ping. The ℓ1 loss is used for depth estimation and surface
normal estimation tasks, while the cross-entropy loss is for
other tasks. The proposed model is trained with a batch size
of 4 for 40,000 iterations. The AdamW optimizer [53] with a
weight decay of 1 × 10−6 and the polynomial learning rate
scheduler are used for all three datasets. The learning rate
is set to 2 × 10−5, 8 × 10−5, and 1 × 10−4 for NYUDv2,
PASCAL-Context, and Cityscapes datasets, respectively.

4.1.3 Evaluation Metrics

Following [9], [11], [12], we adopt mean intersection over
union (mIoU) as the evaluation metric for semantic seg-
mentation and human parsing tasks, root mean square error

TABLE 2
Comparison with state-of-the-art methods on the Cityscapes dataset.

↑ (↓) indicates that a higher (lower) result corresponds to better
performance. The best and second-best results are highlighted in bold

and underline, respectively.

Method Semseg Disparity
mIoU↑ RMSE↓

CNN-based decoder
PAD-Net [5] 53.19 5.05
MTI-Net [6] 59.85 5.06

Transformer-based decoder
InvPT [9] 71.78 4.67
TaskPrompter [12] 72.41 5.49

Mamba-based decoder
MTMamba [24] 78.00 4.66
MTMamba++ 79.13 4.63

(RMSE) for monocular depth estimation and disparity esti-
mation tasks, mean error (mErr) for surface normal estima-
tion task, maximal F-measure (maxF) for saliency detection
task, and optimal-dataset-scale F-measure (odsF) for object
boundary detection task. Moreover, we report the average
relative performance improvement of an MTL model A
over single-task (STL) models as the overall metric, which is
defined as follows,

∆m(A) = 100%× 1

T

T∑
t=1

(−1)st
MA

t −M STL
t

M STL
t

, (6)

where T is the number of tasks, MA
t is the metric value of

method A on task t, and st is 0 if a larger value indicates
better performance for task t, and 1 otherwise.

4.2 Comparison with State-of-the-art Methods

We compare the proposed MTMamba++ method with two
types of MTL methods: (i) CNN-based methods, includ-
ing Cross-Stitch [54], PAP [55], PSD [56], PAD-Net [5],
MTI-Net [6], ATRC [57], and ASTMT [51]; (ii) Trans-
former-based methods, including InvPT [9], TaskPrompter
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TABLE 3
Effectiveness of each core component on NYUDv2. “Multi-task” denotes an MTL model where each task uses standard Swin Transformer blocks

[25] after the ECR block in each decoder stage. “Single-task” is the single-task counterpart of “Multi-task”. #11 is the default configuration of
MTMamba++.

# Method Each Decoder Stage Head Semseg Depth Normal Boundary ∆m[%] #Param FLOPs
mIoU↑ RMSE↓ mErr↓ odsF↑ ↑ MB↓ GB↓

1 Single-task 2*Swin DenseHead 54.32 0.5166 19.21 77.30 0.00 889 1075
2 2*STM DenseHead 54.94 0.5100 18.85 78.00 +1.29 864 1040

3

Multi-task

2*Swin DenseHead 53.72 0.5239 19.97 76.50 -1.87 303 466
4 2*Swin LiteHead 53.37 0.5201 19.62 78.40 -0.78 302 436
5 3*Swin DenseHead 54.22 0.5225 19.84 77.40 -1.11 341 563
6 3*Swin LiteHead 54.44 0.5117 19.65 78.60 +0.14 339 533

7

MTMamba++

2*STM DenseHead 54.66 0.4984 18.81 78.20 +1.84 276 435
8 3*STM DenseHead 54.75 0.5054 18.81 78.20 +1.55 300 517
9 2*STM+1*F-CTM DenseHead 55.82 0.5066 18.63 78.70 +2.38 308 541
10 2*STM+1*F-CTM LiteHead 56.53 0.5054 18.71 79.20 +2.82 306 510
11 2*STM+1*S-CTM LiteHead 57.01 0.4818 18.27 79.40 +4.82 315 524

[12], InvPT++ [11], MQTransformer [10], TSP-Transformer
[13], and MLoRE [14]; and (iii) Diffusion-based method
TaskDiffusion [34].

Table 1 provides the results on NYUDv2 and PASCAL-
Context datasets. As can be seen, MTMamba++ largely out-
performs CNN-based, Transformer-based, and Diffusion-
based methods, especially achieving the best performance
in all four tasks of NYUDv2. Notably, MTMamba++ shows
significant improvements over MLoRE [14] by +1.05 (mIoU)
and +0.97 (odsF) in semantic segmentation and object
boundary detection tasks, which demonstrates the superi-
ority of MTMamba++. Moreover, MTMamba++ performs
better than MTMamba, showing the effectiveness of S-CTM
and LiteHead.

On the PASCAL-Context dataset, MTMamba++ contin-
ues to demonstrate superior performance on all tasks ex-
cept the normal prediction task, which is also comparable.
Compared with MLoRE [14], MTMamba++ achieves no-
table improvements of +0.53 (mIoU), +2.35 (mIoU), +0.66
(maxF), and +3.18 (odsF) in semantic segmentation, human
parsing, saliency detection, and object boundary detection
tasks, respectively. When compared to the diffusion-based
method TaskDiffusion [34], MTMamba++ shows advan-
tages of +0.73 (mIoU), +3.25 (mIoU), +0.62 (maxF), and +3.71
(odsF) in four tasks. These results clearly demonstrate the ef-
fectiveness of MTMamba++ for multi-task dense prediction.
Furthermore, MTMamba++ outperforms our preliminary
work MTMamba on three of five tasks while maintaining
comparable performance on the remaining two, further
validating the effectiveness of our proposed components.

Table 2 shows the results on the Cityscapes dataset.
We can see that Mamba-based methods perform largely
better than the previous CNN-based and Transformer-based
approaches on both two tasks. Moreover, MTMamba++
archives the best performance. Notably, MTMamba++ out-
performs TaksPrompter [12] by +6.72 (mIoU) in the seman-
tic segmentation task, demonstrating that MTMamba++ is
more effective. Besides, MTMamba++ performs better than
MTMamba, which shows the effectiveness of S-CTM and
LiteHead.

The qualitative comparisons with baselines (i.e., InvPT
[9], TaskPrompter [12], and MTMamba [24]) on NYUDv2,
PASCAL-Context, and Cityscapes datasets are shown in Fig-

ures 6, 7, and 8, demonstrating that MTMmaba++ provides
more precise predictions and details.

4.3 Model Analysis

In this section, we provide a comprehensive analysis of the
proposed MTMamba++. Without specific instructions, the
encoder in this section is the Swin-Large Transformer.

4.3.1 Effectiveness of Each Component

The decoders of MTMamba++ contain two types of core
blocks: STM and CTM blocks. Compared to the preliminary
version MTMamba [24], MTMamba++ replaces the F-CTM
block and DenseHead of MTMamba with the S-CTM block
and LiteHead, respectively.

In this experiment, we study the effectiveness of each
component on the NYUDv2 dataset. We first introduce two
groups of baselines: (i) “Multi-task” represents an MTL
model using only standard Swin Transformer blocks [25]
after the ECR block in each decoder stage for each task; and
(ii) “Single-task” means that each task has a task-specific
encoder-decoder. The results are shown in Table 3, where
#9 and #11 are the default configurations of MTMamba and
MTMamba++, respectively.

Firstly, the STM block outperforms the Swin Transformer
block [25] in terms of efficiency and effectiveness for multi-
task dense prediction, as indicated by the superior results in
Table 3 (#3 vs. #7 and #5 vs. #8). Secondly, merely increasing
the number of STM blocks from two to three does not
enhance performance significantly. When the F-CTM block
is incorporated, the performance largely improves in terms
of ∆m (#9 vs. #7/#8), demonstrating the effectiveness of F-
CTM. Thirdly, comparisons between #3 and #4, #5 and #6,
as well as #9 and #10 show that LiteHead is more effective
and efficient than DenseHead. Fourthly, compared #10 with
#11, we can find that replacing F-CTM with S-CTM leads
to a significant performance improvement in all tasks with
a tiny additional cost, demonstrating that the semantic-
aware interaction in S-CTM is more effective than F-CTM.
Finally, the default configuration of MTMamba++ signifi-
cantly surpasses the “Single-task” baselines across all tasks
(#11 vs. #1/#2), thereby demonstrating the effectiveness of
MTMamba++.
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TABLE 4
Comparison between SSM and attention on NYUDv2. We replace the

SSM-related modules in MTMamba++ (i.e., the SS2D and CSS2D
modules) with attention-based mechanisms (i.e., self-attention and

cross-attention mechanisms).

Semseg Depth Normal Boundary ∆m[%] #Param FLOPs
mIoU↑ RMSE↓ mErr↓ odsF↑ ↑ MB↓ GB↓

attention-based 55.15 0.4945 18.72 79.00 +2.63 448 796
SSM-based 57.01 0.4818 18.27 79.40 +4.82 315 524

TABLE 5
Effectiveness of each decoder stage in MTMamba++ on NYUDv2.

Stage1 Stage2 Stage3 Semseg Depth Normal Boundary ∆m[%] #Param FLOPs
mIoU↑ RMSE↓ mErr↓ odsF↑ ↑ MB↓ GB↓

! % % 55.50 0.4960 18.98 67.90 -1.20 287 291
! ! % 55.54 0.4872 18.46 77.70 +3.08 309 393
! ! ! 57.01 0.4818 18.27 79.40 +4.82 315 524

TABLE 6
Effect of each scan in CSS2D module on NYUDv2.

Semseg Depth Normal Boundary ∆m[%]
mIoU↑ RMSE↓ mErr↓ odsF↑ ↑

MTMamba++ 57.01 0.4818 18.27 79.40 +4.82
w/o scan1 56.02 0.4962 18.30 79.30 +3.60
w/o scan2 56.50 0.4967 18.22 79.30 +3.90
w/o scan3 56.09 0.4874 18.41 79.30 +3.91
w/o scan4 56.27 0.4942 18.36 79.30 +3.73

4.3.2 Comparison between SSM and Attention

To demonstrate the superiority of the SSM-based architec-
ture in multi-task dense prediction, we conduct an experi-
ment on NYUDv2 by replacing the SSM-related components
in MTMamba++ with attention-based counterparts. Specif-
ically, we substitute the SS2D module in the STM block
with window-based multi-head self-attention [25] and re-
place the CSS2D module in the S-CTM block with window-
based multi-head cross-attention. The comparative results in
Table 4 show that MTMamba++ significantly outperforms
the attention-based variant across all tasks while requiring
approximately 29.7% fewer parameters and 34.2% lower
FLOPs. This efficiency advantage is primarily from SSM’s
linear computational complexity with respect to sequence
length, in contrast to the quadratic complexity of attention
mechanisms. These results demonstrate that SSM-based ar-
chitectures are more effective and efficient for multi-task
dense prediction tasks, where we need to process high-
resolution feature maps in pixel-level prediction.

4.3.3 Effectiveness of Each Decoder Stage

As shown in Figure 1, the decoder of MTMamba++ consists
of three stages. In this experiment, we study the effective-
ness of these three stages on the NYUDv2 dataset. Table 5
presents the ablation results, clearly demonstrating that each
decoder stage contributes positively to the performance of
MTMamba++. The progressive performance gains achieved
by successively incorporating each stage validate the effec-
tiveness of our multi-stage decoder design in capturing and
integrating multi-scale contextual features. As visualized
in Figure 5, this hierarchical feature aggregation enables
progressively refined predictions with sharper boundaries,
particularly benefiting the boundary detection task.
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Fig. 5. A qualitative comparison of each decoder stage in MTMamba++
on NYUDv2. Zoom in for more details.

TABLE 7
Effect of expand factor α in MTMamba++ on NYUDv2 with different

numbers of tasks. “S”, “D”, “N”, and “B” denote the semantic
segmentation, depth estimation, surface normal estimation, and

boundary detection tasks, respectively.

α
Semseg Depth Normal Boundary ∆m[%]
mIoU↑ RMSE↓ mErr↓ odsF↑ ↑

S-D
1 58.10 0.4768 - - +7.33
2 58.25 0.4808 - - +7.08
3 58.23 0.4859 - - +6.57

S-D-N
1 54.85 0.4956 18.57 - +2.79
2 55.78 0.4888 18.43 - +4.04
3 55.30 0.4932 18.39 - +3.53

S-D-N-B
1 56.74 0.4927 18.45 79.40 +3.93
2 57.01 0.4818 18.27 79.40 +4.82
3 55.85 0.4882 18.40 79.10 +3.71

4.3.4 Effect of Each Scan in CSS2D Module
As mentioned in Section 3.6.2, the CSS2D module scans the
2D feature map from four different directions. We conduct
an experiment on NYUDv2 to study the effect of each
scan. The results are presented in Table 6. As can be seen,
dropping any direction leads to a performance drop com-
pared with the default configuration that uses all directions,
showing that all directions are beneficial to MTMamba++.

4.3.5 Analysis of α
As mentioned in Sections 3.5 and 3.6.2, in MTMamba++,
both STM and S-CTM blocks expand the feature channel to
improve the model capacity by a hyperparameter α. We con-
duct an experiment on NYUDv2 to explore the relationship
between α and task conflicts. Increasing the expansion factor
α enhances the model’s representational capacity for captur-
ing both task-specific features and cross-task interactions.
However, excessively large values can lead to increased
computational complexity and over-parameterization. The
redundancy in the representation space dilutes effective in-
formation and makes model optimization more challenging,
resulting in worse performance.

The results in Table 7 demonstrate that the optimal α
value is correlated with the severity of task conflicts. For
the 2-task setting (S-D), α = 1 achieves the best ∆m,
because the semantic segmentation and depth estimation
tasks have relatively low conflict, requiring minimal addi-
tional capacity for cross-task interaction modeling. How-

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2025.3593621

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 31,2025 at 09:50:28 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

G
T

In
vP

T
M
TM

am
ba

M
TM

am
ba
++

Ta
sk
Pr
om

pt
er

SemsegImage Normal BoundaryDepth

G
T

In
vP

T
Ta
sk
Pr
om

pt
er

M
TM

am
ba

M
TM

am
ba
++

ImageImage Semseg Depth Normal Boundary

Fig. 6. Qualitative comparison with baselines (i.e., InvPT [9], TaskPrompter [12], and MTMamba [24]) on the NYUDv2 dataset. As highlighted,
MTMamba++ generates better predictions with more accurate details and sharper boundaries. In the semantic segmentation task, the black regions
in GT denote the background and are excluded from the computation of loss and evaluation metric (i.e., mIoU). Zoom in for more details.

TABLE 8
Performance of MTMamba++ with different scales of Swin Transformer

encoder on NYUDv2.

Method Encoder Semseg Depth Normal Boundary
mIoU↑ RMSE↓ mErr↓ odsF↑

MTMamba [24] Swin-Small 51.93 0.5246 19.45 77.80
MTMamba++ 52.44 0.5210 19.51 78.10

MTMamba [24] Swin-Base 53.62 0.5126 19.28 77.70
MTMamba++ 55.08 0.5006 18.78 78.60

MTMamba [24] Swin-Large 55.82 0.5066 18.63 78.70
MTMamba++ 57.01 0.4818 18.27 79.40

ever, when the normal estimation task is added in the
3-task setting (S-D-N), task conflicts become more severe
as evidenced by the significant performance drop of both
semantic segmentation and depth estimation tasks. In this
case, α = 2 becomes optimal in terms of ∆m, indicating
that increased representational capacity is needed to handle
the heightened task conflicts. In the 4-task setting (S-D-N-
B), while the boundary detection task is added, the con-
flicts appear to be somewhat alleviated as the boundary
detection task can provide complementary information to
other tasks. Thus, α = 2 continues to perform best in terms
of ∆m, maintaining the balance between adequate capacity
for conflict resolution and avoiding over-parameterization.
Notably, α = 3 consistently underperforms across all con-
figurations, demonstrating that excessively large expansion
factors lead to over-parameterization.

These results demonstrate that smaller α suffices for low-
conflict scenarios, while moderately larger α is beneficial
when severe conflicts exist, but excessively large α always
degrades performance. Thus, α = 2 is adopted as the
default configuration in MTMamba++ as it provides robust
performance across various multi-task scenarios.

4.3.6 Performance on Different Encoders
We perform an experiment on NYUDv2 to investigate the
performance of the proposed MTMamba++ with different
scales of Swin Transformer encoder. The results are shown in

TABLE 9
Comparison with state-of-the-art methods in model size and cost on

the PASCAL-Context dataset. † denotes that the results are from [12].

Method #Param FLOPs Semseg Parsing Saliency Normal Boundary
MB↓ GB↓ mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

PAD-Net† [5] 330 773 78.01 67.12 79.21 14.37 72.60
MTI-Net† [6] 851 774 78.31 67.40 84.75 14.67 73.00
ATRC† [57] 340 871 77.11 66.84 81.20 14.23 72.10
InvPT† [9] 423 669 79.03 67.61 84.81 14.15 73.00
TaskPrompter† [12] 401 497 80.89 68.89 84.83 13.72 73.50
InvPT++ [11] 421 667 80.22 69.12 84.74 13.73 74.20
TSP-Transformer [13] 422 1991 81.48 70.64 84.86 13.69 74.80
MLoRE [14] 407 571 81.41 70.52 84.90 13.51 75.42
TaskDiffusion [34] 416 610 81.21 69.62 84.94 13.55 74.89

MTMamba [24] 336 632 81.11 72.62 84.14 14.14 78.80
MTMamba++ 343 609 81.94 72.87 85.56 14.29 78.60

Table 8. As can be seen, as the model capacity increases, MT-
Mamba++ performs better on all tasks accordingly. More-
over, MTMamba++ consistently outperforms MTMamba on
different encoders, confirming the effectiveness of the pro-
posed S-CTM and LiteHead.

4.3.7 Analysis of Model Size and Cost

Table 9 compares model size and FLOPs between the pro-
posed MTMamba++ and baselines on the PASCAL-Context
dataset. We can see that MTMamba++ achieves state-of-
the-art performance while maintaining high computational
efficiency. Specifically, with only 343MB parameters (14.3%,
18.7%, 15.7%, and 17.5% fewer than InvPT, TSP-Transformer,
MLoRE, and TaskDiffusion, respectively), our MTMamba++
achieves superior performance across most tasks. In terms
of computational cost, MTMamba++ requires only 609GB
FLOPs, which is merely 30.6% of the resources needed
by TSP-Transformer (1991GB) while still outperforming
it. Compared to MLoRE and TaskDiffusion, MTMamba++
achieves better results with comparable computational de-
mands. These results confirm that MTMamba++ offers not
only performance advantages but also practical benefits for
real-world applications through its efficient use of compu-
tational resources.
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Fig. 7. Qualitative comparison with baselines (i.e., InvPT [9], TaskPrompter [12], and MTMamba [24]) on the PASCAL-Context dataset. As
highlighted, MTMamba++ generates better predictions with sharper boundaries and greater precision in small objects. Zoom in for more details.
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Fig. 8. Qualitative comparison with baselines (i.e., InvPT [9], TaskPrompter [12], and MTMamba [24]) on the Cityscapes dataset. As highlighted,
MTMamba++ produces more precise predictions in small objects. Zoom in for more details.

4.4 Visualization of Predictions

In this section, we compare the output predictions
from MTMamba++ against baselines, including InvPT [9],
TaskPrompter [12], and MTMamba [24]. Figures 6, 7, and 8
show the qualitative results on NYUDv2, PASCAL-Context,
and Cityscapes datasets, respectively. As can be seen, MT-
Mamba++ has better visual results than baselines in all
datasets. For example, as highlighted with yellow circles
in Figure 6, MTMamba++ demonstrates fewer misclassifica-
tion errors in semantic segmentation and produces sharper
predicted boundaries in the boundary detection task. Figure
7 illustrates that MTMamba++ achieves more accurate de-
tection of small objects in both semantic segmentation and
human parsing tasks, particularly evident in the highlighted
regions where our method can effectively detect distant
pedestrians. MTMamba++ also generates sharper predicted
boundaries for the object boundary detection task. Similarly,
as highlighted in Figure 8, MTMamba++ achieves higher
precision in detecting small objects (e.g., street lamps and
tree trunks) in semantic segmentation, which are missed by
Transformer-based methods. Hence, both qualitative study
(Figures 6, 7, and 8) and quantitative study (Tables 1 and 2)

show the superior performance of MTMamba++.

5 CONCLUSION

In this paper, we propose MTMamba++, a novel multi-
task architecture with a Mamba-based decoder for multi-
task dense scene understanding. With two types of core
blocks (i.e., STM and CTM blocks), MTMamba++ can effec-
tively model long-range dependency and achieve cross-task
interaction. We design two variants of the CTM block to
promote knowledge exchange across tasks from the feature
and semantic perspectives, respectively. Experiments on
three benchmark datasets demonstrate that MTMamba++
achieves better performance than previous methods while
maintaining high computational efficiency.
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