
Meta-Learning with Complex Tasks

by

WEISEN JIANG

A Thesis Submitted to
The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

in Computer Science and Engineering

July 2024, Hong Kong

Copyright © by WEISEN JIANG 2024

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis to

other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce

the thesis by photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

ii

WEISEN JIANG

16 July 2024

Meta-Learning with Complex Tasks

by

WEISEN JIANG

This is to certify that I have examined the above Ph.D. thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

Prof. James T. Kwok, Thesis Supervisor

Prof. Xiaofang Zhou, Head of Department

Department of Computer Science and Engineering

15 July 2024

iii

Acknowledgments

I would not complete this work without the help of many people.

First and foremost, I would like to express my deepest gratitude to my Ph.D. advisors,

Prof. James T. Kwok and Prof. Yu Zhang. Their guidance and encouragement helped

me in all the time of research and writing of this thesis.

I would like to extend my sincere thanks to the committee members of PQE, proposal,

and defense: Professors Brian Mak, Minhao Cheng, Dan Xu, Junxian He, Yangqiu Song,

Rong Tang, and Sinno Jialin Pan. Their insightful suggestions and valuable comments

have undoubtedly improved the quality of my thesis.

Many thanks are given to my collaborators: Hansi Yang, Longhui Yu, Han Shi, Jincheng

Yu, Zhengying Liu, Zhenguo Li, Weiyang Liu, Baijiong Lin, Feiyang Ye, Yulong Zhang,

Shuhao Chen, Yanbin Wei, Shuai Fu, and Xuehao Wang. It was my honor to work

together with them and I really enjoyed these collaborations.

I also thank my teammates in Prof. Kwok’s and Prof. Zhang’s groups. Without them,

my university life would not be so colorful.

Last but not least, I’m deeply indebted to my family members for their unconditional

love, support, and encouragement during my Ph.D. journey.

iv

Table of Contents

Title Page i

Authorization Page ii

Signature Page iii

Acknowledgments iv

Table of Contents v

List of Figures ix

List of Tables xi

List of Notations xiii

Abstract xiv

Chapter 1 Introduction 1

1.1 Motivation 1

1.2 Category of Meta-Learning Algorithms 2

1.3 Applications of Meta-Learning 4

1.3.1 Computer Vision Tasks 4

1.3.2 Natural Language Processing Tasks 4

1.4 Thesis Contributions and Organization 5

Chapter 2 Background 9

2.1 Formulation of Meta-Learning 9

2.2 Representative Meta-Learning Algorithms 9

2.2.1 MAML 9

2.2.2 iMAML 11

v

2.2.3 Prototypical Networks 12

2.2.4 MetaOptNet 13

2.3 Prompt Learning for Language Models 14

2.3.1 Prompt Tuning 14

2.3.2 MetaPrompting 15

2.4 CoT Prompting for Mathematical Reasoning Tasks 16

2.4.1 Chain-of-Thought Prompting 16

2.4.2 Mathematical Reasoning 17

Chapter 3 Meta-Regularization by Kernelized Proximal Regularization 19

3.1 Introduction 19

3.2 Meta-Initialization versus Meta-Regularization 20

3.3 The Proposed MetaProx 23

3.4 Theoretical Analysis 26

3.5 Experiments on Few-shot Regression 27

3.6 Experiments on Few-shot Classification 31

3.7 Conclusion 33

Chapter 4 Subspace Meta-Learning 35

4.1 Introduction 35

4.2 Learning Multiple Subspaces for Meta-Learning 36

4.2.1 Linear Regression Tasks 36

4.2.2 The Proposed MUSML 36

4.3 Theoretical Analysis 38

4.4 Experiments on Few-shot Regression 40

4.4.1 Synthetic Data 40

4.4.2 Pose Data 43

4.5 Experiments on Few-shot Classification 44

4.5.1 Experimental Setup 44

4.5.2 Meta-Dataset-BTAF 45

vi

江伟森

江伟森

4.5.3 Meta-Dataset-ABF and Meta-Dataset-CIO 47

4.5.4 Cross-Domain Few-Shot Classification 48

4.5.5 Effects of K and m 49

4.5.6 Effects of Temperature Scaling Schedule 51

4.5.7 Improving Existing Meta-Learning Approaches 52

4.6 Conclusion 52

Chapter 5 Structured Prompting by Meta-Learning 53

5.1 Introduction 53

5.2 The Proposed MetaPrompter 55

5.2.1 Representative Verbalizer 55

5.2.2 Meta Structured-Prompting 56

5.3 Experiments 59

5.3.1 Setup 59

5.3.2 Evaluation on RepVerb 60

5.3.3 Evaluation on MetaPrompter 61

5.3.4 Visualization 63

5.4 Conclusion 65

Chapter 6 Forward-Backward Reasoning in LLMs for Mathematical Verification 66

6.1 Introduction 66

6.2 Forward-Backward Reasoning for Verification 68

6.2.1 Forward Reasoning 68

6.2.2 Backward Reasoning 69

6.2.3 FOBAR (FOrward and BAckward Reasoning) 71

6.2.4 Extension to Non-Mathematical Reasoning Tasks 72

6.3 Experiments on Mathematical Tasks 74

6.3.1 Setup 74

6.3.2 Main Results 75

6.3.3 Combining Forward and Backward Probabilities 76

vii

6.3.4 Usefulness of Forward and Backward Reasoning 77

6.3.5 Number of Forward and Backward Reasoning Chains 78

6.4 Analysis on Forward/Backward Reasoning 79

6.4.1 Saturated Performance of Self-Consistency 79

6.4.2 Correct Candidate Helps Backward Reasoning 80

6.5 Experiments on Non-Mathematical Tasks 81

6.6 Conclusion 81

Chapter 7 MetaMathQA: Bootstrap Math Questions for LLMs 83

7.1 Introduction 83

7.2 The Proposed MetaMathQA 85

7.2.1 Answer Augmentation 86

7.2.2 Question Bootstrapping by LLM Rephrasing 86

7.2.3 Question Bootstrapping by Backward Reasoning 88

7.2.4 Finetuning the LLMs 90

7.3 Experiments 91

7.3.1 Proposed MetaMathQA Dataset 91

7.3.2 Usefulness of MetaMathQA 91

7.4 Conclusion 96

Chapter 8 Conclusion & Future Works 97

8.1 Conclusion 97

8.2 Future Works 99

Appendix 101

References 111

viii

List of Figures

1.1 Illustration for meta-learning. 2

1.2 Outline of the thesis. 6

2.1 Illustration for MAML. 10

3.1 Convergence curves for few-shot sinusoid regression. 30

3.2 Sinusoid regression: Two meta-testing tasks τ1 and τ2 with different σξ ’s
in 2-shot ((a) –(d)) and 5-shot ((e)–(h)) settings. 31

4.1 Visualization of task model parameters. 42

4.2 Some random images from the meta-testing set of Meta-Dataset-BTAF
(Top to bottom: Bird, Texture, Aircraft, and Fungi). 44

4.3 Task assignment to the learned subspaces in 5-way 5-shot setting on Meta-
Dataset-BTAF (the number of subspaces K selected by the meta-validation
set is 4). Darker color indicates higher percentage. 46

4.4 Task assignment to the learned subspaces in 5-way 1-shot on Meta-
Dataset-BTAF (K selected by meta-validation set is 2). 47

4.5 Task assignment to the learned subspaces in 5-way 5-shot setting on
Meta-Dataset-CIO (K selected by the meta-validation set is 3). Darker
color indicates higher percentage. 49

4.6 5-way 5-shot classification accuracy on Meta-Dataset-BTAF with varying
K (m is fixed at 2). 50

4.7 5-way 5-shot classification accuracy on Meta-Dataset-BTAF with varying
m (K is fixed at 4). 50

4.8 Singular values of model parameters of meta-testing tasks under the
5-way 5-shot setting on Meta-Dataset-BTAF (K = 4 and m = 5). 51

4.9 Effects of K and m on the training loss, testing loss, and generalization
gap (with 95% confidence interval) of meta-testing tasks under the 5-way
5-shot setting on Meta-Dataset-BTAF. 51

5.1 5-way 5-shot classification meta-testing accuracy of MetaPrompting with
or without MLM tuning on six data sets. 54

5.2 Overview of MetaPrompter.. 56

5.3 t-SNE visualization of [MASK]’s embeddings (crosses) and label embed-
dings (circles) for a 5-way 5-shot task randomly sampled from Reuters. 61

ix

5.4 Distribution of attention weights on 5-way 5-shot classification of Reuters
(15 topics). 63

5.5 Cosine similarities between learned prompt tokens and topic embed-
dings on 5-way 5-shot classification of Reuters. In the x-axis, (i, j) stands
for the jth row of θi (i.e., θ

(j)
i) 64

6.1 Overview of forward/backward reasoning and the proposed FOBAR.
The detailed procedure is shown in Algorithm 7. 69

6.2 Testing accuracy (averaged over the six data sets) of FOBAR w.r.t. α. 77

6.3 Testing accuracy of FOBAR (averaged over the six data sets) with geo-
metric/arithmetic mean of forward and backward probabilities. 77

6.4 Testing accuracy of FOBAR (averaged over the six data sets) with MF. 78

6.5 Testing accuracy of FOBAR (averaged over the six data sets) with MB. 79

6.6 Accuracy (averaged over six data sets) of Self-Consistency versus number
of sampling paths (MF). 80

6.7 Accuracy (averaged over all backward questions across the six data sets)
of predicting the masked number in backward questions with correc-
t/wrong candidate answers. 80

7.1 GSM8K accuracy of LLaMA-2-7B finetuned on different sizes of answer
augmentation data. Larger diversity gain indicates the question is more
diverse compared to the existing questions. Detailed experimental setup
is given in Section 7.3.2. 84

7.2 Overview of MetaMath. 85

7.3 The accuracy gap between GSM8K and GSM8K-Backward. 95

x

List of Tables

3.1 Average MSE (with 95% confidence intervals) of few-shot regression on
the Sine and Sale datasets. (The confidence intervals in Sale experiments
are ±0.001 for all methods) 29

3.2 Average MSE (with 95% confidence intervals) of few-shot regression on
QMUL (10-shot). Results of the first four methods are from [169]. 32

3.3 Accuracies (with 95% confidence intervals) of 5-way few-shot classifica-
tion on mini-ImageNet using Conv4. † means that the result is obtained by
rerunning the code with our setup here. Other results from their original
publications (Result on the 5-shot setting is not reported in iMAML [188]).

33

3.4 Accuracies (with 95% confidence intervals) of 5-way few-shot classifica-
tion on mini-ImageNet using ResNet-12. † means that the result is obtained
by rerunning the code with our setup here. 33

4.1 Meta-testing MSE (with standard deviation) of 5-shot regression on
synthetic data. For TSA-MAML, the number in brackets is the number of
clusters used. 41

4.2 Average Euclidean distance (with standard deviation) between the es-
timated task model parameters and ground-truth in 5-shot setting on
synthetic data. For TSA-MAML, the number in brackets is the number of
clusters used. 42

4.3 Meta-testing MSE (with standard deviation) of 15-shot regression on
Pose. Results on MAML and MR-MAML are from [265]. 43

4.4 Statistics of the datasets. 44

4.5 5-way 5-shot accuracy (with 95% confidence interval) on Meta-Dataset-
BTAF. Results marked with † are from [260]. 46

4.6 5-way 1-shot accuracy (with 95% confidence interval) on Meta-Dataset-
BTAF. Results marked with † are from [260]. 47

4.7 Accuracy (with 95% confidence interval) of 5-way 5-shot classification
on Meta-Dataset-ABF. Results marked with † are from [285]. 48

4.8 Accuracy (with 95% confidence interval) of 5-way 5-shot classification
on Meta-Dataset-CIO. 48

4.9 Accuracy of cross-domain 5-way 5-shot classification (Meta-Dataset-BTAF
→ Meta-Dataset-CIO). 49

4.10 Accuracy of 5-way 5-shot classification on Meta-Dataset-BTAF. 51

xi

4.11 Accuracy of 5-way 5-shot classification on meta-datasets. 52

5.1 Statistics of the data sets. 60

5.2 Meta-testing accuracy of 5-way few-shot classification. 61

5.3 5-way 5-shot classification meta-testing accuracy. Results marked with †

are from [18]. “–” indicates that the corresponding result is not reported
in [18]. 62

5.4 5-way 1-shot classification meta-testing accuracy. Results marked with †

are from [18]. “–” indicates that the corresponding result is not reported
in [18]. 62

5.5 Nearest tokens to the learned prompts for Reuters. 63

6.1 Statistics of data sets used in the experiments. 74

6.2 Testing accuracies (%) on six data sets using three LLMs. For each LLM,
methods are grouped according to the base prompt they used. The best
in each group is in bold. Results with † are from the original publications.
“–” means that the result is not reported in the original publication. 76

6.3 Average testing accuracies (%) with different combinations of forward
(FO) and backward (BA) reasoning. 78

6.4 Statistics on the failure cases of Self-Consistency on the six data sets. 80

6.5 Accuracies on the non-mathematical tasks of Date Understanding and
Last Letter Concatenation using GPT-3.5-Turbo. Results with † are from the
original publications. “–” means that the result is not reported in the
original publication. 81

7.1 Number of samples in the proposed MetaMathQA. 91

7.2 Comparison of testing accuracy to existing LLMs on GSM8K and MATH. 94

7.3 Effect of different question augmentation with LLaMA-2-7B finetuned
on GSM8K or MATH. 95

xii

List of Notations

Notation Description Notation Description

Rd d-dimensional vector space I identity matrix
x, z, a vectors ⊗ Kronecker product

A, B, C matrices σmin(A) smallest singular value of A
x⊤, A⊤ transpose of x, A λmin(A) smallest eigenvalue value of A

A⊥ A’s orthogonal complement ∥ · ∥, ∥ · ∥F ℓ2 norm, Frobenius norm

τ task B mini-batch
p(τ) task distribution Sτ task τ’s support (training) set
T set of meta-training tasks Qτ task τ’s query (validation) set

(x, y) sample: feature x and its label y S (y)
τ samples in Sτ with label y

D data set of samples Yτ task τ’s label set
|D| number of elements in D Vy set of tokens relevant to label y

wτ task-specific parameter ℓ(ŷ, y) loss function
θ meta-parameter L(D; w) loss on D using model w

f (x; w) prediction of x using model w ϕ, Φ parameters

t iteration counter b mini-batch size
J, T number of total iterations ρ, λ hyperparameter
η, ηt learning rate h[MASK] embedding of the [MASK] token

N (µ, σ2) normal distribution with mean µ
and variance σ2

N (µ, Σ) multivariate normal distribution
with mean µ and covariance Σ

K(·, ·) kernel H Hilbert space
T(·; θ) template with soft prompt θ I(·) indicator function

softmax(·) softmax function U (a, b) uniform distribution over [a, b]
Q, R, A question, reasoning chain, answer

xiii

Meta-Learning with Complex Tasks

WEISEN JIANG

Department of Computer Science and Engineering

The Hong Kong University of Science and Technology

ABSTRACT

Meta-Learning aims at extracting shared knowledge (meta-knowledge) from historical

tasks to accelerate learning on new tasks. It has achieved promising performance

in various applications and many meta-learning algorithms have been developed

to learn a meta-model that contains meta-knowledge (e.g., meta-initialization/meta-

regularization) for task-specific learning procedures. In this thesis, we focus on meta-

learning with complex tasks, thus, task-specific knowledge is diverse and various meta-

knowledge is required.

First, we extend learning an efficient meta-regularization for linear models to nonlinear

models by kernelized proximal regularization, allowing more powerful models like

deep networks to deal with complex tasks. Second, we formulate the task-specific

model parameters into a subspace mixture and propose a model-agnostic meta-learning

algorithm to learn the subspace bases. Each subspace represents one type of meta-

knowledge and structured meta-knowledge accelerates learning complex tasks more

effectively than a simple meta-model. Third, we propose an effective and parameter-

efficient meta-learning algorithm for prompt tuning on natural language processing

tasks. The proposed algorithm learns a pool of multiple meta-prompts to extract meta-

knowledge from meta-training tasks and then constructs instance-dependent prompts

as weighted combinations of all the meta-prompts by attention. Instance-dependent

prompts are flexible and powerful for prompting complex tasks.

xiv

Next, we study mathematical reasoning tasks using large language models (LLMs).

To verify the candidate answers generated by LLMs, we propose combining the meta-

knowledge of forward and backward reasoning. Lastly, we propose question augmen-

tation to enlarge the question set for training LLMs to enhance the LLMs’ mathematical

reasoning meta-knowledge. The original questions are augmented in two directions: in the

forward direction, we rephrase the questions by few-shot prompting; in the backward

direction, we mask a number in the question and create a backward question to predict

the masked number when the answer is provided.

xv

CHAPTER 1

Introduction

1.1 Motivation

Humans can easily learn new knowledge from a handful of examples and quickly adapt

to unseen tasks. They leverage prior knowledge and experience from historical tasks to

construct task-required knowledge when facing new tasks. Though deep networks have

achieved great success in various applications [73, 199], they are data-hungry. Hence,

a large number of training samples are required to learn a new task. This challenge

remains a crucial bottleneck in making progress in machine learning algorithms and

many research efforts attempt to use historical knowledge to improve data-efficiency in

learning tasks.

Multitask learning (MTL) [276] learns common knowledge from several tasks by mini-

mizing the weighted sum of losses on training data of each task. For the seen tasks, MTL

has shown good performance on testing samples [277, 282, 27, 92, 133]. However, the

learned MTL model is not guaranteed to generalize better and achieve faster learning

on unseen tasks. Furthermore, MTL also suffers from the scalability issue when we have

many tasks, leading to a heavy burden on computation and memory. For example, in

5-way 1-shot classification on the mini-ImageNet data [231], there are (64
5) ≈ 7× 106 tasks

in total.

Transfer learning [166, 257] finetunes a pretrained model on training data of a task to

obtain a task-specific model. For example, for a CIFAR-10 [112] classification task,

we first pretrain a network (e.g., ResNet-18 [73]) on ImageNet dataset [199], then use

the pretrained network as initialization for gradient descent algorithms to minimize

the training loss on CIFAR-10. Transfer learning has been successfully used in image

classification [181, 70], natural language processing [13, 49], and reinforcement learning

[58, 287]. However, pretraining and finetuning are independent, thus, the pretrained

model may not be suitable for learning new tasks with limited samples.

Recently, meta-learning (or learning to learn) [10, 223] provides a general framework to

extract meta-knowledge from historical tasks to accelerate learning unseen tasks for

1

...

Meta-Learner

Task 1 Task 2 Task n

...

New Task

Base Learner
meta-knowledge

Figure 1.1: Illustration for meta-learning.

reducing the labor-intensive and time-consuming process of data. Figure 1.1 illustrates

the procedure of meta-learning. Meta-learning algorithms usually operate in two levels.

At each iteration, we sample a task; in the inner level, the base learner takes meta-

knowledge (e.g., initialization, regularization, feature extractor) and training set to learn

a task-specific model; in the outer level, the meta-learner takes the task-specific model

and validation set to update the meta-knowledge. As the loss on the validation set

is a proxy measure of generalization ability, the meta-knowledge is explicitly tuned

to learning new tasks with limited training data. At testing, the base learner uses the

extracted meta-knowledge to achieve fast learning on unseen tasks. Meta-learning

has been receiving increasing attention due to its successful applications in few-shot

learning [238, 51, 231, 216, 98], hyperparameter optimization [55], neural architecture

search [135, 288], and reinforcement learning [189].

1.2 Category of Meta-Learning Algorithms

Based on the type of base learner, popular meta-learning algorithms can be categorized

into four groups: optimization-based, metric-based, memory-based, and in-context

learning.

For optimization-based methods, the base learner performs gradient descent to minimize

a task-specific training loss, where meta-parameters in the optimization algorithm are

meta-knowledge learned by the meta-learner. The meta-parameters can be initializa-

tion, regularization, learning rate, preconditioning matrix, and sample weights. Meta-

initialization and meta-regularization are two representative methods. MAML [51] is a

2

pioneering meta-initialization method: the base learner takes a meta-initialization and

performs several gradient updates on the training set to obtain a task-specific model,

while the meta-learner updates the meta-initialization by performing a gradient update

on the validation set using the obtained task-specific model. As MAML is very general,

many variants are proposed to improve its effectiveness (e.g., Meta-SGD[127], T-Nets

[118], Meta-Curvature [167], WarpGrad [53]) and efficiency (e.g., FO-MAML [51], Rep-

tile [157]). The bilevel structure is complex and challenging to understand MAML from

a theoretical view. Recently, many efforts have been devoted to study its convergence

[52, 47, 234, 235, 95, 94] and generalization [149, 285, 35, 36, 173, 174, 195, 48, 187, 20, 225].

In meta-regularization, the base learner minimizes a regularized loss of training data

to obtain a task-specific model, while the meta-learner updates the learnable regular-

izer by minimizing the validation loss using the obtained model. Typical algorithms

include iMAML [188], Meta-MinibatchProx [284], and regularization for linear mod-

els [34, 35, 36]. As real-world tasks are usually complex, non-structured meta-learning

methods learn a single meta-initialization or meta-regularization may be insufficient for

capturing meta-knowledge of all tasks. To deal with this issue, structured meta-learning

methods [93, 111, 229, 285] propose to formulate meta-knowledge into structures like

clusters, such that each task can choose a suitable cluster center as initialization.

Metric-based methods aim at meta-learning a good feature extractor to map inputs to an

embedding space, where the base learner trains a simple but effective classifier with

few samples. Convolutional neural networks (e.g., VGG [214], ResNet [73]) and Vision

Transformers [43] are widely used in feature extraction. For classifier, some popular

candidates are the nearest neighbor classifier (e.g., ProtoNet [216]), linear models (e.g.,

R2D2 [11]), and kernel classifier (e.g., MetaOptNet [117])).

Memory-based methods incorporate a memory structure to store meta-knowledge for

accelerating learning future tasks. For example, an external memory (table or key-

value pairs) is used in [203, 190, 155, 5]; hypernetworks (also called meta-networks) are

external networks that contain knowledge of how to generate task parameters [154, 201,

215, 45, 156].

In-Context Learning (ICL) (or Few-Shot Prompting) [16, 150, 25, 136, 197, 138] can also be

viewed as a meta-learning algorithm. It uses large language models (LLMs) to solve a

task by feeding K examples as part of the input. The K examples are concatenated as a

3

prompt

PICL = “Question: Q(1) \n Answer: A⋆(1) . . . Question: Q(K) \n Answer: A⋆(K)”,

where Q(i) and A⋆(i) are the question and answer, respectively. In inference, a new

question Q is appended to the prompt as “PICL \n Question: Q \n Answer:” and fed to

the LLM for generating output sequences. An answer extractor is used to extract the

prediction Â from the output (e.g., the number after the last “Answer:” [16]). Compared

with optimization-based algorithms, ICL is more efficient in computation and memory,

as the LLM is fixed and shared across tasks. This can be crucial as LLMs are usually very

large (e.g., GPT-3 [16] has 175 billion parameters). ICL has demonstrated promising

performance on a variety of tasks [16, 197, 136, 263, 252].

1.3 Applications of Meta-Learning

1.3.1 Computer Vision Tasks

Meta-Learning has a wide variety of applications in computer vision regimes, includ-

ing few-shot classification [231, 191], object detection [175], landmark prediction [67],

few-shot object segmentation [207], few-shot image generation [270], and density esti-

mation [193].

Few-shot classification (FSC) is the most common application of meta-learning and is

used in the thesis to evaluate the performance of meta-learning algorithms. The task

is to classify classes with limited samples per class, which is very challenging, and

many meta-learning methods have been proposed to improve their performance. For

example, metric-based meta-learning algorithms like ProtoNet are specialized to FSC.

The benchmark of FSC is more complex than that of traditional machine learning

benchmark, which evaluates the model from seen instances to unseen instances. However,

in meta-learning, the FSC benchmark evaluates the generalization ability of the learned

model from seen classes to unseen classes. Popular FSC benchmarks are miniImageNet [231,

191], CIFAR-FS [11], Omniglot [113], Meta-Dataset [259, 228].

1.3.2 Natural Language Processing Tasks

Large language models have achieved great success recently and many pretrained

models are released for downstream tasks such as language understanding [42, 258, 217],

4

machine translation [32, 69], and text classification [16, 119]. As finetuning the large

models causes a heavy burden on computations, many parameter-efficient (PE) learning

methods are proposed, e.g., prompt tuning and in-context learning. Prompt learning

[16, 211, 40] freezes the pretrained model and formulates the downstream task as a

cloze-style masked language model (MLM) problem [38]. In-Context Learning (ICL)

[150, 25] uses a pretrained MLM to learn a new task by formatting training examples as

a demonstration.

Similar to computer vision, collecting or designing many samples for training is infeasi-

ble. To deal with this issue, meta-learning is used to improve the data-efficiency of PE

learning. For example, MetaPrompting [81] proposes to learn a good meta-initialization

for the prompt vector, while MetaICL [150] finetunes the language model to make it

more suitable for in-context learning.

1.4 Thesis Contributions and Organization

In this thesis, we study meta-learning with complex tasks, which are challenging for

existing meta-learning algorithms. Figure 1.2 shows an overview of the organization of

the thesis. In Chapter 2, we introduce the background of meta-learning as well as several

representative algorithms, and prompting learning in NLP. The main contributions of

other chapters are summarized as follows.

1. Chapter 3 learns a meta-regularization for nonlinear models to deal with complex

tasks. The content of this Chapter is mainly based on Jiang et al. [97].

• We introduce nonlinearity to meta-regularization by kernelized proximal

regularization.

• We propose a novel meta-learning algorithm called MetaProx for learning

the meta-regularization. For regression tasks, the base learner has an efficient

closed-form solution.

• We establish local and global convergence of the proposed algorithm.

• Experiments on a variety of benchmark regression and classification datasets

demonstrate that MetaProx is better than the state-of-the-art.

2. Chapter 4 formulates meta-knowledge into a subspace mixture to handle complex

5

Meta-Learning

Structured
Meta-Knowledge

Non-Structured
Meta-Knowledge

Chapter 3
Meta-Regularization by

Kernelized Proximal
Regularization

Chapter 4
Subspace Meta-learning

Chapter 5
Structured Prompting by

Meta-Learning

Applications

CV

NLP

Prompting

Finetuning

Chapter 6
Forward-Backward Reasoning

in LLMs for Mathematical
Verification

Chapter 7
MetaMathQA: Bootstrapping

Math Questions for LLMs

(meta-model: linear -> nonlinear)

(meta-model: single -> multiple subspaces)

(meta-prompt: single -> pool)

(meta-knowledge: forward + backward reasoning)

(meta-data: augmenting meta-question

Figure 1.2: Outline of the thesis.

tasks that have diverse model weights. The content of this Chapter is mainly

based on Jiang et al. [99].

• We formulate task model parameters into multiple subspaces (each subspace

represents one type of meta-knowledge) and propose a model-agnostic algo-

rithm MUSML to learn the subspace bases.

• We provide a theoretical analysis of the population risk, empirical risk, and

generalization gap.

• Extensive experiments on regression and classification datasets demonstrate

the effectiveness of learning a subspace mixture.

6

3. Chapter 5 studies applications of meta-learning in language models and learns a

prompt pool for constructing instance-dependent prompts for complex NLP tasks.

The content of this Chapter is mainly based on Jiang et al. [101].

• We use a prompt pool to extract meta-knowledge and construct instance-

dependent prompts by attention.

• We design a novel soft verbalizer called representative verbalizer, which

builds label embeddings by averaging feature embeddings.

• Combining meta-learning a prompt pool with a novel soft verbalizer, we

propose a novel parameter-efficient meta-learning algorithm MetaPrompter.

• Experimental results demonstrate the usefulness and parameter-efficiency

of MetaPrompter. Moreover, the superiority of the proposed representative

verbalizer over existing verbalizers is verified by empirical evaluations.

4. Chapter 6 studies the problem of verifying candidate answers of mathemat-

ical problems by leveraging LLMs’ forward and backward reasoning meta-

knowledge. The content of this Chapter is mainly based on Jiang et al. [103].

• We use the meta-knowledge of backward reasoning for mathematical verifi-

cation, i.e., masking a number in the original question and asking the LLM to

predict the masked number when a candidate answer is provided.

• We propose FOBAR to combine FOrward and BAckward Reasoning meta-

knowledge for verification.

• Experimental results on six standard mathematical benchmarks and three

LLMs show that FOBAR achieves SOTA performance. In particular, FOBAR

outperforms Self-Consistency which uses forward reasoning alone, demon-

strating that combining forward and backward reasoning together is better.

Additionally, FOBAR outperforms Self-Verification, confirming that using

the simple template and the proposed combination is more effective.

• Empirical results on two non-mathematical reasoning tasks show that FOBAR

also performs well.

5. Chapter 7 studies data augmentation in finetuning open-source LLMs to enhance

the meta-knowledge of solving mathematical problems. The content of this

Chapter is mainly based on Yu, Jiang, et al. [267].

7

• We propose a novel question bootstrapping method to augment the training

dataset, resulting in MetaMathQA. Question bootstrapping rewrites questions

with both forward and backward reasoning paths.

• Based on the MetaMathQA dataset, MetaMath is finetuned from state-of-the-art

open-source LLMs (e.g., LLaMA-2), showing excellent forward and backward

reasoning ability on mathematical tasks.

• Our work studies data augmentation for improving the mathematical problem-

solving meta-knowledge of LLMs. Despite being simple, our method signifi-

cantly outperforms many intricate methods. Our results highlight the impor-

tance of data augmentation and also shed light on other reasoning tasks.

Other publications [98, 100, 102, 129, 278, 244].

8

CHAPTER 2

Background

2.1 Formulation of Meta-Learning

In meta-learning, a collection T of tasks sampled from a task distribution p(τ) are

used to learn a meta-parameter θ and base learner’s parameters {w1, . . . , w|T |}. Each

task τ contains a support (also called training) set Sτ = {(xi, yi) : i = 1, . . . , ns} and

a query (also called validation) set Qτ = {(xi, yi) : i = 1, . . . , nq}, where x ∈ Rd are

the features and y the labels. For the classification task, Yτ is the label set of τ. Let

f (·; w) be a model parameterized by w and L(D; w) ≡ 1
|D| ∑(x,y)∈D ℓ(f (x; w), y) be

the supervised loss on data set D, where ℓ(·, ·) is a loss function (e.g., cross-entropy

loss for classification, squared loss for regression). In each meta-training iteration, a

mini-batch B of tasks is randomly sampled from T . The base learner takes a task τ

from B and the meta-parameter θ to build the model f (·; wτ). After all tasks in the

min-batch are processed by the base learner, the meta-learner updates θ by minimizing

the loss ∑τ∈B L(Qτ; wτ) w.r.t. θ, and the iteration repeats. During meta-testing, given

an unseen task τ′ ∼ p(τ), a model f (·; wτ′) is similarly learned from Sτ′ and θ. Finally,

its performance is evaluated on Qτ′ .

2.2 Representative Meta-Learning Algorithms

2.2.1 MAML

A pioneer work for learning a meta-initialization is Model-Agnostic Meta-Learning

(MAML) proposed by Finn et al. [51]. An illustration is shown in Figure 2.1.

Meta-Training. MAML operates in two optimization levels (let Bt be a mini-batch of

tasks at iteration t):

• Inner Level: For each task τ ∈ Bt, the base learner takes its support set Sτ and

the meta-initialization θt−1 to build a task-specific model w(J)
τ by performing J

9

<latexit sha1_base64="WIsgWgnRro8mhmKhIEXyAxtdPBQ=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCG0sioi6LblxWsA9oQphMpu3QSSbM3AglBDf+ihsXirj1K9z5N07aLLT1wDCHc+7l3nuChDMFtv1tVJaWV1bXquu1jc2t7R1zd6+jRCoJbRPBhewFWFHOYtoGBpz2EklxFHDaDcY3hd99oFIxEd/DJKFehIcxGzCCQUu+eeAGgodqEukvc2FEAed+BqdO7pt1u2FPYS0SpyR1VKLlm19uKEga0RgIx0r1HTsBL8MSGOE0r7mpogkmYzykfU1jHFHlZdMTcutYK6E1EFK/GKyp+rsjw5EqttSVEYaRmvcK8T+vn8LgystYnKRAYzIbNEi5BcIq8rBCJikBPtEEE8n0rhYZYYkJ6NRqOgRn/uRF0jlrOBcN5+683rwu46iiQ3SETpCDLlET3aIWaiOCHtEzekVvxpPxYrwbH7PSilH27KM/MD5/AAIIl9E=</latexit>

✓t�1

<latexit sha1_base64="+Kc2ZP4i16dfb4DpLHTKjp3XfL8=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoZbEInkoioh6LXjxWsB/QxLDZbtqlm03YnSg19Jd48aCIV3+KN/+N2zYHbX0w8Hhvhpl5YSq4Bsf5tkorq2vrG+XNytb2zm7V3ttv6yRTlLVoIhLVDYlmgkvWAg6CdVPFSBwK1glH11O/88CU5om8g3HK/JgMJI84JWCkwK7mXhjhx0ng3nsaiArsmlN3ZsDLxC1IDRVoBvaX109oFjMJVBCte66Tgp8TBZwKNql4mWYpoSMyYD1DJYmZ9vPZ4RN8bJQ+jhJlSgKeqb8nchJrPY5D0xkTGOpFbyr+5/UyiC79nMs0AybpfFGUCQwJnqaA+1wxCmJsCKGKm1sxHRJFKJisKiYEd/HlZdI+rbvndff2rNa4KuIoo0N0hE6Qiy5QA92gJmohijL0jF7Rm/VkvVjv1se8tWQVMwfoD6zPH4CTkv4=</latexit>

w?
1

<latexit sha1_base64="13K1/k+qeYeWNWEhItZ+T87rn20=">AAAB+HicbVBNS8NAEN34WetHox69LBbBU0mKqMeiF48V7Ac0MWy2m3bpZhN2J0oN/SVePCji1Z/izX/jts1BWx8MPN6bYWZemAquwXG+rZXVtfWNzdJWeXtnd69i7x+0dZIpylo0EYnqhkQzwSVrAQfBuqliJA4F64Sj66nfeWBK80TewThlfkwGkkecEjBSYFdyL4zw4ySo33saiArsqlNzZsDLxC1IFRVoBvaX109oFjMJVBCte66Tgp8TBZwKNil7mWYpoSMyYD1DJYmZ9vPZ4RN8YpQ+jhJlSgKeqb8nchJrPY5D0xkTGOpFbyr+5/UyiC79nMs0AybpfFGUCQwJnqaA+1wxCmJsCKGKm1sxHRJFKJisyiYEd/HlZdKu19zzmnt7Vm1cFXGU0BE6RqfIRReogW5QE7UQRRl6Rq/ozXqyXqx362PeumIVM4foD6zPH4Idkv8=</latexit>

w?
2

<latexit sha1_base64="IG7U5gIzoWjfPAwOV8M3+SNs4/w=">AAAB+HicbVBNS8NAEJ34WetHox69LBbBU0lU1GPRi8cK9gOaGDbbTbt0swm7G6WG/hIvHhTx6k/x5r9x2+agrQ8GHu/NMDMvTDlT2nG+raXlldW19dJGeXNre6di7+61VJJJQpsk4YnshFhRzgRtaqY57aSS4jjktB0Oryd++4FKxRJxp0cp9WPcFyxiBGsjBXYl98IIPY6D03tPaSwDu+rUnCnQInELUoUCjcD+8noJyWIqNOFYqa7rpNrPsdSMcDoue5miKSZD3KddQwWOqfLz6eFjdGSUHooSaUpoNFV/T+Q4VmoUh6Yzxnqg5r2J+J/XzXR06edMpJmmgswWRRlHOkGTFFCPSUo0HxmCiWTmVkQGWGKiTVZlE4I7//IiaZ3U3POae3tWrV8VcZTgAA7hGFy4gDrcQAOaQCCDZ3iFN+vJerHerY9Z65JVzOzDH1ifP4OnkwA=</latexit>

w?
3

<latexit sha1_base64="GCqQXNTzuYPXmEtiBaiyr2hmZ+A=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyURUZdFNy4r2Ac0IUwm03boZBJmboQSCv6KGxeKuPU73Pk3TtostPXAMIdz7mXOnDAVXIPjfFuVldW19Y3qZm1re2d3z94/6OgkU5S1aSIS1QuJZoJL1gYOgvVSxUgcCtYNx7eF331kSvNEPsAkZX5MhpIPOCVgpMA+8sJERHoSmyv3YMSATAMI7LrTcGbAy8QtSR2VaAX2lxclNIuZBCqI1n3XScHPiQJOBZvWvEyzlNAxGbK+oZLETPv5LP4UnxolwoNEmSMBz9TfGzmJdZHQTMYERnrRK8T/vH4Gg2s/5zLNgEk6f2iQCQwJLrrAEVeMgpgYQqjiJiumI6IIBdNYzZTgLn55mXTOG+5lw72/qDdvyjqq6BidoDPkoivURHeohdqIohw9o1f0Zj1ZL9a79TEfrVjlziH6A+vzB0GIllM=</latexit>

✓t

<latexit sha1_base64="UZpcxyScuX/9c3iBetJLekojBaE=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIqMuiGxcuKtgHNCHcTKft0MkkzEyEGoq/4saFIm79D3f+jZM2C209MHA4517umRMmnCntON9WaWl5ZXWtvF7Z2Nza3rF391oqTiWhTRLzWHZCUJQzQZuaaU47iaQQhZy2w9F17rcfqFQsFvd6nFA/goFgfUZAGymwDzwBIQfsRaCHBHh2OwncwK46NWcKvEjcglRRgUZgf3m9mKQRFZpwUKrrOon2M5CaEU4nFS9VNAEyggHtGiogosrPpukn+NgoPdyPpXlC46n6eyODSKlxFJrJPKSa93LxP6+b6v6lnzGRpJoKMjvUTznWMc6rwD0mKdF8bAgQyUxWTIYggWhTWMWU4M5/eZG0Tmvuec29O6vWr4o6yugQHaET5KILVEc3qIGaiKBH9Ixe0Zv1ZL1Y79bHbLRkFTv76A+szx8VlJT9</latexit>rL1

<latexit sha1_base64="yXeXLs+j+qUigS69CoLmv7wPvdA=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZIi6rLoxoWLCvYBTQg300k7dDIJMxOhhuKvuHGhiFv/w51/47TNQlsPDBzOuZd75oQpZ0o7zre1tLyyurZe2ihvbm3v7Np7+y2VZJLQJkl4IjshKMqZoE3NNKedVFKIQ07b4fB64rcfqFQsEfd6lFI/hr5gESOgjRTYh56AkAP2YtADAjy/HQe1wK44VWcKvEjcglRQgUZgf3m9hGQxFZpwUKrrOqn2c5CaEU7HZS9TNAUyhD7tGiogpsrPp+nH+MQoPRwl0jyh8VT9vZFDrNQoDs3kJKSa9ybif14309GlnzORZpoKMjsUZRzrBE+qwD0mKdF8ZAgQyUxWTAYggWhTWNmU4M5/eZG0alX3vOrenVXqV0UdJXSEjtEpctEFqqMb1EBNRNAjekav6M16sl6sd+tjNrpkFTsH6A+szx8XGJT+</latexit>rL2

<latexit sha1_base64="KIwC+f6jAAGVZPhnsF2j3EF6jGA=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVRIVdVl048JFBfuAJpSb6aQdOpmEmYlQQ/FX3LhQxK3/4c6/cdJmoa0HBg7n3Ms9c4KEM6Ud59taWFxaXlktrZXXNza3tu2d3aaKU0log8Q8lu0AFOVM0IZmmtN2IilEAaetYHid+60HKhWLxb0eJdSPoC9YyAhoI3XtfU9AwAF7EegBAZ7djrunXbviVJ0J8DxxC1JBBepd+8vrxSSNqNCEg1Id10m0n4HUjHA6LnupogmQIfRpx1ABEVV+Nkk/xkdG6eEwluYJjSfq740MIqVGUWAm85Bq1svF/7xOqsNLP2MiSTUVZHooTDnWMc6rwD0mKdF8ZAgQyUxWTAYggWhTWNmU4M5+eZ40T6ruedW9O6vUroo6SugAHaJj5KILVEM3qI4aiKBH9Ixe0Zv1ZL1Y79bHdHTBKnb20B9Ynz8YnJT/</latexit>rL3

Figure 2.1: Illustration for MAML.

gradient descent steps with initialization w(0)
τ = θt−1 and step size α > 0:

w(j)
τ = w(j−1)

τ − α∇
w(j−1)

τ
L
(
Sτ; w(j−1)

τ

)
, j = 1, . . . , J. (2.1)

Note that w(J)
τ is a function of θt.

• Outer Level : For each task τ ∈ Bt, the meta-learner takes its query set Qτ and the

task-specific model w(J)
τ to compute the gradient of L(Qτ; w(J)

τ) w.r.t. θt−1, i.e.,

meta-gradient. The meta-initialization is updated as:

θt = θt−1 −
ηt

|Bt| ∑
τ∈Bt

∇θt−1L
(
Qτ; w(J)

τ

)
, (2.2)

where ηt > 0 is step size.

By the chain rule, the meta-gradient ∇θt−1L(Qτ; w(J)
τ) = ∇θt−1w(J)

τ ∇
w(J)

τ
L(Qτ; w(J)

τ)

(particularly, ∇θt−1w(J)
τ) requires back-propagating through the entire inner optimiza-

tion path, incurring huge computations, especially for large models and a large J. To

reduce the computational cost, FO-MAML [51] discard the second-order derivative and

use the first-order approximation ∇θt−1L(Qτ; w(J)
τ) ≈ ∇

w(J)
τ
L(Qτ; w(J)

τ). Alternatively,

Reptile [157] approximates meta-gradient by the update direction from task model pa-

rameters to meta-initialization, i.e., θt = θt−1 − ηt
|Bt| ∑τ∈Bt

(
θt−1 − w(J)

τ

)
. As this update

rules do not need to compute the derivative of w(J)
τ w.r.t. θt−1, it is flexible to choose

the optimization algorithms used in the base learner, e.g., second-order algorithms (e.g.,

Gauss-Newton method [242]) or even non-differentiable methods like line search [15].

10

Besides efficiency, empirical results in [51, 157] demonstrate that the approximations in

FOMAML and Reptile do not hurt the performance of MAML.

Meta-Testing. Given an unseen task τ′ = (Sτ′ ,Qτ′), the base learner takes Sτ′ and θT

to build a task-specific model w(J)
τ′ , which is then used to predict the query sample in

Qτ′ and evaluate performance.

Several works improve MAML using preconditioning gradients in the inner loop,

e.g., MetaSGD [127], Meta-Curvature [167], T-Nets [118], and WarpGrad [53]. Unlike

MAML that updates all network parameters in the base learner, recent work [186, 159,

210] reveals that updating only part of the network can improve both efficiency and

effectiveness.

2.2.2 iMAML

Meta-regularization [34, 35, 188, 284, 36, 97] is another optimization-based meta-learning

method, which assumes that task models are close to a prior model. A representative

algorithm is iMAML [188]. The base learner obtains the task model by solving a

regularized empirical risk minimization, while the prior model θ in the regularization is

learned by the meta-learner. Specifically, at each meta-iteration t, the base learner takes

Sτ and θt−1 to build task model ŵτ by solving the regularized minimization problem:

ŵτ = arg min
wτ

L(Sτ; wτ) +
λ

2
∥wτ − θt−1∥2, (2.3)

where λ > 0 is hyperparameter. Similar to meta-initialization, ŵτ is a function of θt−1.

The meta-learner in meta-regularization algorithms (iMAML [188] and Denevi et al.

[34]) update the regularizer by performing gradient descent steps on the validation loss

θt = θt−1 −
ηt

|Bt| ∑
τ∈Bt

∇θt−1L(Qτ; ŵτ). (2.4)

By the chain rule, it follows that ∇θt−1L(Qτ; ŵτ) = ∇θt−1ŵτ∇ŵτL(Qτ; ŵτ). The second

term ∇ŵτL(Qτ; ŵτ) can be computed directly by auto-differentiation, but the first term

∇θt−1ŵτ is more difficult as it is an implicit derivative. As ŵτ is a minimizer to problem

(2.3), it follows from the first-order optimal condition that

∇ŵτL(Sτ; ŵτ) + λ(ŵτ − θt−1) = 0. (2.5)

11

By implicit function theorem [198], it follows that ∇2
ŵτ

L(Sτ; ŵτ)∇θt−1ŵτ +λ(∇θt−1ŵτ −
I) = 0, thus, the implicit derivative is

∇θt−1ŵτ =

(
1
λ
∇2

ŵτ
L(Sτ; ŵτ) + I

)−1

. (2.6)

Compared with meta-initialization (e.g., MAML), iMAML has two advantages: (i) Com-

puting the meta-gradients does not require to back-propagate through the inner opti-

mization path. Hence, we can use many gradient updates in the base learner to obtain

an accurate solution, which can address the short-horizon bias issue in one-step MAML.

(ii) The meta-gradient does not depend on the optimization path, thus, the chosen

optimizer in the base learner is flexible, e.g., AdaDelta [271], Adam [108], AdamW [143].

2.2.3 Prototypical Networks

ProtoNet [216] is a representative metric-based method. It employs a neural network

to map inputs to an embedding space, then represents each class’s prototype by the

mean embeddings of the corresponding samples in the support set. For each sample in

the query set, its label prediction is based on the similarity between feature embedding

and label embedding. Let S (y)
τ be the subset of samples in Sτ with label y, and NN(·; ϕ)

be a feature extractor parameterized by ϕ. Specifically, the base learner builds class

prototype as follows

py =
1

|S (y)
τ |

∑
(xi,y)∈S(y)

τ

NN(xi; ϕt−1), (2.7)

and the label prediction for (x, ·) ∈ Qτ is (y ∈ Yτ)

P(y|x; ϕt−1) =
exp(−κ dist(py, NN(x; ϕt−1)))

∑y′∈Yτ
exp(−κ dist(py′ , NN(x; ϕt−1))

, (2.8)

where κ is a temperature, and dist(z1, z2) is a distance metric (e.g., 1
2∥z1 − z2∥2). The

meta-learner updates the meta-parameter as follows:

ϕt = ϕt−1 +
ηt

|Bt| ∑
τ∈Bt

1
|Qτ| ∑

(xi,yi)∈Qτ

∇ϕt−1
logP(yi|xi; ϕt−1), (2.9)

The framework of ProtoNet is simple and general, and the distance metric is flexible.

Other possible metrics are cosine similarity [22, 63, 137], earth mover’s distance [273], a

metric learned by deep networks [219], a metric based on graph convolution blocks [60].

12

2.2.4 MetaOptNet

When the embedding space is high-dimensional, a trainable linear classifier is more

expressive than the nearest neighbor learner ProtoNet [216]. MetaOptNet [117] is a

representative algorithm. Let z = NN(x; ϕ) ∈ Re denote the feature embedding of x,

Ztr
τ ∈ R|Sτ |×e is the embedding matrix of Sτ (each row vector corresponds to a feature

embedding), and Ytr
τ ∈ R|Sτ |×C is the label matrix (assume |Yτ| = C).

The base learner takes Sτ and ϕt−1 to construct task model W⋆
τ by solving the following

ridge regression problem:

W⋆
τ = arg min

Wτ∈Re×C

1
2
∥Ztr

τ Wτ − Ytr
τ ∥2 +

λ

2
∥Wτ∥2, (2.10)

where λ > 0 is a hyperparameter. The above problem has a closed-form solution

W⋆
τ =

(
Ztr⊤

τ Ztr
τ + λI

)−1 Ztr⊤
τ Y⊤

τ , which implicitly depends on ϕt−1 via Ztr
τ . In the inner

loop, different from MAML [51], R2D2 keeps the feature extractor frozen and only

learns the linear classifier. The meta-learner takes W⋆
τ to makes prediction on query

samples (xi, yi) ∈ Qτ as

ŷi = at−1 NN(xi; ϕt−1)
⊤W⋆

τ + ct−1, (2.11)

where at−1 and ct−1 are meta-parameters for scaling. Meta-parameters are updated as

(ϕt, at, ct) = (ϕt−1, at−1, ct−1)− η∇(ϕt−1,at−1,ct−1)
1
b ∑

τ∈Bt

1
nq

∑
(xi,yi)∈Qτ

ℓ(ŷi, yi). (2.12)

MetaOptNet extends the ridge regression in R2D2 to a general convex classifier, e.g.,

support vector machine (SVM). The base learner solves the dual problem:

max
ατ,1,...,ατ,C

− 1
2 ∑

c
∥α⊤

τ,cZtr
τ ∥2 + ∑

(xi,yi)∈Sτ

ατ,yi,i (2.13)

s.t. ατ,yi,i ≤ γ, ατ,c,i ≤ 0 for c ̸= yi, 1⊤ατ,·,i = 0, ∀i. (2.14)

Unlike ridge regression, the above quadratic program (QP) has no closed-form solution.

As the optimization variable is of size ns × C, which is independent of the embedding

dimension, the dual variable can be obtained with low cost by an iterative solver,

e.g., projected gradient methods [17, 130]. With the dual solution α⋆
τ ∈ Rns×C, the

prediction of a query example (x, y) is ŷ = NN(x; ϕ)⊤Ztr⊤
τ α⋆

τ. The meta-learner updates

13

the meta-parameters as:

ϕt = ϕt−1 −
ηt

b ∑
τ∈Bt

1
nq

∑
(xi,yi)∈Qτ

∇ϕt−1
ℓ(ŷi, yi). (2.15)

Note that α⋆
τ is a solution to the dual problem, implicitly depends on ϕt. Similar to

iMAML [188], we can use implicit function theorem to compute the gradient of ∇ϕt−1
α⋆

τ.

See the CVXPYLayers package [2] for an implementation to solve the dual problem and

back-propagate gradients through the convex learner.

2.3 Prompt Learning for Language Models

2.3.1 Prompt Tuning

Recently, it is common to use a pretrained MLM M(·; ϕ), with parameter ϕ, for various

downstream tasks such as language understanding [42, 258, 217], machine transla-

tion [32, 69], and text classification [16, 119, 140]. Given a raw sentence represented

as a sequence of n tokens (x1, . . . , xn), the MLM takes x = ([CLS], x1, . . . , xn, [SEP]) as

input (where [CLS] is the start token and [SEP] is the separator), and encodes it into

a sequence of hidden representations (h[CLS], h1, . . . , hn, h[SEP]). In standard finetun-

ing [83, 38], an extra classifier (e.g., a fully connected layer with softmax normalization)

is added on top of h[CLS] to predict the label distribution. This classifier, together with

ϕ, are tuned to maximize the probability of correct labels. As language models are large

(e.g., 175 billion parameters in GPT-3 [16]), finetuning all parameters can cause a heavy

burden on computation and memory.

On the other hand, prompt learning [16, 211, 40] freezes the pretrained model and

formulates the downstream task as a cloze-style MLM problem. For example, in topic

classification, “Topic is [MASK]” can be used as the prompt, where [MASK] is a special

token for prediction. The discrete tokens “Topic is” are also called anchor tokens.

An input text x is wrapped with the prompt and mapped to an input embedding

sequence (E(x), E(Topic), E(is), E([MASK])), where E(·) denotes input embedding.

Designing a suitable prompt requires domain expertise and a good understanding of

the downstream tasks [16, 202]. Thus, manually-designed prompts are likely to be

sub-optimal.

Unlike discrete prompts, prompt tuning [119, 139] uses a continuous prompt θ ∈ RLp×di

(of length Lp) to directly wrap the input embedding sequence as (E(x), θ, E([MASK])).
14

This can be further combined with anchor tokens to form a template [139, 204, 40]:

x̃ ≡ T(x; θ) = (E(x), θ, E(Topic), E(is), E([MASK])).

The MLM then outputs the hidden embedding h[MASK](x̃) ∈ Rdo of [MASK], and infers

the token to be filled at the [MASK] position.

A verbalizer [119, 40, 86] bridges the prediction at the [MASK] position and labels in

prompt learning. Specifically, it is a hand-crafted mapping from each label y to a

set of label-relevant tokens Vy. For example, for y = “SPORTS”, we can have Vy =

{“sports”, “football”, “basketball”}. Prompt tuning then optimizes1 (ϕ, θ) by

maximizing the label probability:

P̂(y|x; ϕ, θ) =
1

|Vy| ∑
w∈Vy

PM([MASK] = w|T(x; θ)), (2.16)

where PM([MASK]|T(x; θ)) is the probability distribution over vocabulary as predicted

by the MLM at the [MASK] position.

The verbalizer is crucial to the performance of prompt learning [119, 40]. However,

selecting label-relevant tokens requires intensive human labor. Recent works [71, 275,

33] propose soft verbalizers, which map each label to a continuous embedding and

predict label distribution based on the similarity between feature embedding and label

embeddings. WARP [71] and DART [275] obtain this label embedding by supervised

learning, while ProtoVerb [33] uses contrastive learning [21, 224]. However, learning

the embedding vy ∈ Rdo for each label y can be challenging in the few-shot learning

setting [59, 9, 72, 18, 81], as the number of samples per class is typically much smaller

than do (e.g., do = 768 for BERT [38]).

2.3.2 MetaPrompting

As prompt tuning is sensitive to prompt initialization in few-shot tasks [119], meta-

learning can be used to search for a good initialization. MetaPrompting [81] uses

MAML to learn a meta-initialization for the task-specific prompts. At iteration t, the

base learner takes a task τ and meta-parameter (ϕt−1, θt−1), and builds a task-specific

model (ϕt,J , θt,J) by performing J gradient updates on the support set with step size

1ϕ can be fixed for parameter-efficiency in prompt learning.

15

α > 0 and initialization (ϕt,0, θt,0) ≡ (ϕt−1, θt−1):

(ϕt,j, θt,j) = (ϕt,j−1, θt,j−1) + α∇(ϕt,j−1,θt,j−1) ∑
(x,y)∈Sτ

log P̂(y|x; ϕt,j−1, θt,j−1).

The meta-learner then updates the meta-initialization by maximizing the log-likelihood

objective on the query set with step size η > 0:

(ϕt, θt) = (ϕt−1, θt−1) + η∇(ϕt−1,θt−1) ∑
(x,y)∈Qτ

log P̂(y|x; ϕt,J , θt,J).

Though MetaPrompting achieves state-of-the-art performance in the few-shot classifica-

tion experiments [81], it suffers from three problems. (i) When the tasks are complex, it

is challenging to obtain good prompts for all tasks and samples from a single meta-ini-

tialization. (ii) MetaPrompting uses a hand-crafted verbalizer. However, selecting

good label tokens for the hand-crafted verbalizer is labor-intensive and not scalable for

a large label set. (iii) MetaPrompting requires expensive tuning the whole MLM.

2.4 CoT Prompting for Mathematical Reasoning Tasks

2.4.1 Chain-of-Thought Prompting

CoT Prompting. Wei et al. (2022) propose augmenting question-answer pairs with

intermediate steps such that the LLM can solve questions step-by-step. Specifically, each

in-context example is a triplet (Q(i), R(i), A⋆(i)), where R(i) is a reasoning chain with

natural language descriptions of steps leading from the question Q(i) to the ground-truth

answer A⋆(i). In inference, a new question Q is appended to the prompt:

PCoT= “Question: Q(1); Answer: R(1), A⋆(1). . . Question: Q(K); Answer: R(K), A⋆(K)”

and “PCoT \n Question: {Q} \n Answer:” is fed to the LLM for generating both its rea-

soning chain R and answer A. CoT prompting has achieved SOTA performance on a

wide variety of tasks [243, 109, 57, 279, 237, 281, 283, 280].

Recently, many works [57, 281, 147, 171, 212, 245, 283, 24, 274] have been proposed to

improve the quality of reasoning chains in CoT prompting. ComplexCoT [57] selects

examples with more steps as in-context examples, while PHP [281] iteratively uses the

previous answers as hints in prompting. These aforementioned works can be viewed

as forward reasoning, which starts from the question and generates a reasoning chain

16

to reach the answer [246, 208]. Instead of taking a single reasoning chain by greedy

decoding, Self-Consistency [237] samples a diverse set of chains and obtains a set of

candidate answers. The final answer is then selected by majority voting.

Backward Reasoning (a.k.a. backward chaining) [176, 200, 107, 128, 266] starts with an

answer and works backward to verify the sequence of steps or conditions necessary

to reach this answer. Backward reasoning is particularly useful in domains when the

answer is known, e.g., in automated theorem provers [200, 194, 236, 106, 178]. Recently,

Self-Verification [246] rewrites the question with an answer into a declarative statement

and then asks the LLM to predict a number in the question. RCoT [254] regenerates a

sentence (a sequence of tokens) in the question conditioning on the answer and detects

whether there is factual inconsistency in the constructed question by three complicated

steps. Self-Verification and RCoT need additional rewriting and reconstruction for

creating backward questions. Moreover, Self-Verification and RCoT use backward

reasoning alone for verifying candidate answers.

2.4.2 Mathematical Reasoning

Solving mathematical reasoning tasks like GSM8K [30] and MATH [77] is one of the

most challenging problem in LLMs. Many CoT methods [243, 57, 237, 283] have been

proposed to design powerful prompts for activating the close-source LLMs’ mathematical

reasoning ability. Self-Consistency [237], which is the SOTA method, samples multiple

reasoning paths and selects the final answer by majority voting.

Another category of work is finetuning-based methods, which finetunes open-source

models (e.g., LLaMA [226], Mistral [96]) with the knowledge from some advanced

closed-source LLMs [161, 163]. Magister et al. [148] investigates the transfer of reason-

ing capabilities via knowledge distillation. Yuan et al. [268] proposes to apply rejection

sampling finetuning (RFT) to improve mathematical reasoning performance. Wizard-

Math [145] proposes a reinforced evol-instruct method to enhance reasoning abilities

by supervised finetuning and PPO training [206]. MAmmoTH [269] combines CoT

and Program-of-Thought [23] rationales for teaching LLMs to use external tools (e.g.,

Python interpreter) for solving mathematical problems.

Knowledge Distillation [78, 65] transfers knowledge from a larger teacher model

to a smaller student model, achieving promising performance in many applications

[209, 168, 75, 151], Recently, [124, 87, 79, 148, 84, 56, 213] propose to transfer reasoning

17

abilities from LLMs (e.g., GPT-3.5-Turbo [161], PaLM [29]) to small language models (e.g.,

T5 [184], GPT-2 [182]). For example, Finetune-CoT [79] samples multiple reasoning paths

from LLMs and finetunes the student model with the correct ones, while Self-Improve

[87] chooses the one with the highest confidence. Li et al. [124] further feeds the question

and ground-truth label to LLMs for prompting its reasoning path. Shridhar et al. [213]

proposes to generate sub-questions and solution pairs for training. Small models

finetuned by knowledge distillation can achieve similar performance to LLMs [148, 79]

on both common sense reasoning (e.g., CommonSenseQA [220]) and symbol reasoning

(e.g., CoinFlip [243]). However, for solving challenging mathematical problems (e.g.,

GSM8K [30]), there is still a large performance gap [79, 56, 148].

18

CHAPTER 3

Meta-Regularization by Kernelized Proximal

Regularization

3.1 Introduction

Humans can easily learn new tasks from a handful of examples using prior knowledge

and experience. In contrast, deep networks are data-hungry, and a large number of

training samples are required to mitigate overfitting. To reduce the labor-intensive and

time-consuming process of data labeling, meta-learning (or learning to learn) [10, 223] aims

to exact meta-knowledge from seen tasks to accelerate learning on unseen tasks. Re-

cently, meta-learning has been receiving increasing attention due to its diverse successful

applications in few-shot learning [238, 51, 231, 216], hyperparameter optimization [55],

neural architecture search [135, 288], and reinforcement learning [189].

Many meta-learning algorithms operate on two levels. A base learner learns task-specific

models in the inner loop, and a meta-learner learns the meta-parameter in the outer loop.

A popular class of algorithms is based on meta-initialization [51, 157, 47, 228], such as

the well-known MAML [51]. It learns a model initialization such that a good model

for an unseen task can be learned from limited samples by a few gradient updates.

However, computing the meta-gradient requires back-propagating through the entire

inner optimization path, which is infeasible for large models and/or many gradient

steps. During testing, it is common for MAML’s base learner to perform many gradient

steps to seek a more accurate solution [51]. However, for regression using a linear

base learner and square loss, we will show that though the meta-learner can converge

to the optimal meta-initialization, the base learner may overfit the training data at

meta-testing.

Another class of meta-learning algorithms is based on meta-regularization [188, 284, 34,

35, 36], in which the base learner learns the task-specific model by minimizing the loss

with a proximal regularizer (a biased regularizer from the meta-parameter). Denevi

et al. [34] uses a linear model with an efficient closed-form solution for the base learner.

19

However, extending to nonlinear base learners requires computing the meta-gradient

using matrix inversion, which can be infeasible for deep networks [188].

To introduce nonlinearity to the base learner, a recent approach is to make use of the

kernel trick. For example, R2D2 [11] and MetaOptNet [117] use deep kernels [247] in

meta-learning for few-shot classification. Specifically, the deep network is learned in

the meta-learner, while a base kernel is used in the base learner. Though they achieve

state-of-the-art performance, their base learners use a Tikhonov regularizer rather than

a learnable proximal regularizer as in meta-regularization methods.

As learning a meta-regularization has been shown to be effective in linear models

for regression [34] and classification [35], in this chapter, we propose a kernel-based

algorithm to meta-learn a proximal regularizer for a nonlinear base learner. By ker-

nel extension, the learnable function in the proximal regularizer is a function in the

reproducing kernel Hilbert space (RKHS) induced by the base kernel. The proposed

algorithm is guaranteed to converge to a critical point of the meta-loss and its global

convergence is also established. Experiments on various benchmark regression and

classification datasets demonstrate the superiority of the proposed algorithm over the

state-of-the-arts.

Our contributions are summarized as follows. (i) By kernelizing proximal regular-

ization, we introduce nonlinearity to meta-regularization. (i) We propose a novel

meta-learning algorithm called MetaProx for learning the nonlinear meta-regularization.

For regression tasks, the base learner has an efficient closed-form solution. For classifi-

cation tasks, as the dimension of dual variables is low, the computation cost is also low.

(i) We establish the local and global convergence of the proposed algorithm. (i) Exper-

iments on a variety of benchmark regression and classification datasets demonstrate

that MetaProx performs better than the state-of-the-arts.

3.2 Meta-Initialization versus Meta-Regularization

In this section, we consider a simple regression setting with a linear model and square

loss. Each task τ is a linear regressor with parameter w⋆
τ ∈ Rd. We assume that each

input x is sampled from N (0, σ2
x I) and the output y is obtained as x⊤w⋆

τ + ξ, where

ξ ∼ N (0, σ2
ξ) is the random noise. We compare two representative meta-learning

algorithms: (i) MAML [51], which is based on meta-initialization and performs one

20

Algorithm 1 MAML [51].
Require: step size γ and ηt, batch size b;

1: for t = 1, 2, 3, . . . do
2: sample a batch Bt of tasks from p(τ);
3: base learner:
4: for τ ∈ Bt do
5: w(gd)

τ (ψt) = ψt − γX⊤
τ (Xτψt − yτ);

6: gτ = 1
2 ∑(x,y)∈Qτ

∇ψt
(x⊤w(gd)

τ (ψt)− y)2;
7: end for
8: meta-learner: ψt+1 = ψt −

ηt
b ∑τ∈Bt

gτ;
9: end for

gradient descent step in the inner loop of the bilevel optimization problem; and (ii)

learning around a common mean (denoted CommonMean) [34], which is based on

meta-regularization. It learns the model parameters for task τ by minimizing the loss

with a proximal regularizer around the meta-parameter θ:

w(prox)
τ (θ) = arg min

w
∑(xi,yi)∈Sτ

1
2
(w⊤xi − yi)

2 +
λ

2
∥w − θ∥2

= (λI + X⊤
τ Xτ)

−1(λθ+ X⊤
τ yτ), (3.1)

where Xτ = [x⊤1 ; . . . ; x⊤ns] is the sample matrix from Sτ (each column of Xτ is an input

vector), and yτ = [y1; . . . ; yns] is the corresponding label vector. Note that w(prox)
τ is a

function of θ. Algorithms 1 and 2 show MAML and CommonMean, respectively, for

this problem.

Recently, Balcan et al. [7] study the convex online meta-learning setting and show that

both approaches achieve the same average task regret. Here, we consider the offline

setting. First, the following Proposition shows that both MAML and CommonMean

converge to the same meta-parameter. All proofs for theoretical results in this chapter

are in the Appendix.

Proposition 3.2.1. Let ηt = 1/t. Assume that γ < 1/σ2
x . Both ψt in MAML (with one inner

gradient step) and θt in CommonMean converge to w̄ = Eτw⋆
τ.

The following Proposition shows that w̄ in Proposition 3.2.1 is also the best ψ (for

MAML) or θ (for CommonMean) with the lowest population risk for this meta-learning

problem.

Proposition 3.2.2. Assume γ<1/σ2
x . We have w̄=arg minθ EτESτ

EQτ ∑(x,y)∈Qτ
(x⊤w(prox)

τ −

y)2=arg minψ EτESτ
EQτ∑(x,y)∈Qτ

(x⊤w(gd)
τ −y)2.

21

Algorithm 2 CommonMean [34].
Require: hyperparameter λ, step size ηt, batch size b;

1: for t = 1, 2, 3, . . . do
2: sample a batch Bt of tasks from p(τ);
3: base learner:
4: for τ ∈ Bt do
5: w(prox)

τ = minw
1
2∥Xτw − yτ∥2 + λ

2 ∥w − θt∥2;

6: gτ = 1
2 ∑(x,y)∈Qτ

∇θt(x
⊤w(prox)

τ − y)2;
7: end for
8: meta-learner: θt+1 = θt − ηt

b ∑τ∈Bt
gτ;

9: end for

During meta-testing, we sample a task τ′ ∼ p(τ) with parameter w⋆
τ′ . Let Xτ′ be the

sample matrix from Sτ′ , and yτ′ be the corresponding label vector. We assume that Xτ′

is full rank and ns < d. To simplify notations, we drop the subscript τ′ in the following.

Let the singular value decomposition of X be UΣV⊤ (where Σ = diag([ν1, . . . , νns])), and

V⊥ be V’s orthogonal complement.

As only forward passes are needed, it is common for the base learner in MAML to

perform multiple gradient steps [51]. With the convex loss and linear model here,

the base learner can obtain a globally optimal solution w(gd∞) directly (which is

equivalent to taking infinite gradient steps). As is common in few-shot learning,

the number of support samples is much smaller than feature dimensionality. Hence,

w(gd∞) is not unique but depends on the learned initialization. Let w(gd∞) be writ-

ten as w(gd∞) = Va(gd∞) + V⊥b(gd∞). For gradient descent, its update direction

X⊤(Xw − y) = VΣU⊤(Xw − y) is always in the span of V and so b(gd∞) remains

unchanged.

Let w⋆ and θ be written as w⋆ = Va⋆ + V⊥b⋆ and θ = Va0 + V⊥b0. Moreover, let

ã = a0 − a⋆ and b̃ = b0 − b⋆.

Proposition 3.2.3 ([68]). Assume that γ < min1≤j≤ns 1/ν2
j . We have Eξ∥w(gd∞) − w⋆∥2 =

∥b(gd∞) − b⋆∥2 + ∑ns
j=1

(
σξ

νj

)2
, where the expectation is over the label noise vector ξ.

For CommonMean, using the Woodbury matrix identity, we have w(prox) = θ +

X⊤(λI + XX⊤)−1(y − Xθ) = V(a0 + ΣU⊤(λI + XX⊤)−1(y − Xθ)) + V⊥b0 ≡ Va(prox) +

V⊥b(prox), where b(prox) = b0. Assume that w(gd∞) is initialized with θ. Since b(gd∞)

remains unchanged, w(prox) and w(gd∞) only differ in the components lying in the

column space of V.

22

Proposition 3.2.4. Eξ∥w(prox)−w⋆∥2 = ∥b̃∥2 +∑ns
j=1

(
λãj

λ+ν2
j

)2

+∑ns
j=1

(
σξ

(λ/νj)+νj

)2
, where

the expectation is over the label noise vector ξ.

As can be seen, when the labels are noise-free (σ2
ξ = 0), w(gd∞) performs better than

w(prox). However, when the labels are noisy, as ns < d, gradient descent always

converges to zero training error and overfits the noisy labels. On the other hand, the

estimation error of w(prox) equals to that of w(gd∞) when λ = 0. For λ > 0, it trades off

between fitting the noisy labels (the last term in Proposition 3.2.4) and introducing an

estimation bias of a⋆ (the second term in Proposition 3.2.4).

3.3 The Proposed MetaProx

It is straightforward to use the dual formulation for the CommonMean algorithm. When

the square loss is used as ℓ(·, ·), it is easy to see that the dual variable has the closed-form

solution

ατ = (I + λ−1XτX⊤
τ)

−1(yτ − Xτθ). (3.2)

Compared with the primal formulation, we only need to invert a ns × ns matrix (instead

of the d × d matrix λI + X⊤
τ Xτ). In meta-learning, usually ns ≪ d (e.g., ns = 5). From

the dual solution ατ, the primal solution can be recovered as wτ = θ+ λ−1X⊤
τ ατ. Given

a query example (x, y) ∈ Qτ, the model predicts ŷ = x⊤wτ = x⊤θ+ λ−1x⊤X⊤
τ ατ. The

loss gradient is ∇θℓ(ŷ, y) = ∇1ℓ(ŷ, y)∇θŷ, where ∇1ℓ(ŷ, y) denotes the gradient w.r.t.

the first argument, and ∇θŷ = x + λ−1(∇θατ)⊤Xτx,∇θατ = −(I + λ−1XτX⊤
τ)

−1Xτ.

The complexity of computing ∇θℓ(ŷ, y) is thus very low (O(n3
s + n2

s d)).

The dual formulation also allows the introduction of nonlinearity with the kernel trick.

Based on deep kernels [247], recent state-of-the-arts (R2D2 [11], MetaOptNet [117], and

DKT [169]) propose to use a base kernel in the base learner and update the deep network

in the meta-learner. However, their regularizers are not learnable. In this work, we

propose learning a proximal regularizer for the base learner (Algorithm 3). Specifically,

let NN(x; ϕ) be a feature extractor parameterized by ϕ. An input x is mapped to

z = NN(x; ϕt−1) in an embedding space E . Zτ ≡ [z⊤1 ; . . . ; z⊤ns], where zi = NN(xi; ϕt−1)

for xi ∈ Sτ. K is a base kernel on E × E , and H is the corresponding RKHS. The primal

23

problem in the inner loop is:

f̂τ = arg min
fτ∈H

∑(xi,yi)∈Sτ
ℓ(fτ(zi), yi) +

λ

2
∥ fτ − fθt−1∥2

H. (3.3)

By the representer theorem [205], the solution of (3.3) is fτ = fθ + ∑(xi,yi)∈Sτ
ατ,iKzi ,

where Kzi = K(zi, ·) ∈ K, and ατ = [ατ,1; . . . ; ατ,ns] is obtained from the convex

program

min
ατ

∑(xi,yi)∈Sτ
ℓ(fτ(zi), yi) + α⊤

τ K(Zτ, Zτ)ατ, (3.4)

where Zτ = [z⊤1 ; . . . ; z⊤ns], and K(Zτ, Zτ) is the kernel matrix. Note that the hy-

perparameter λ in (3.3) is absorbed into z as the network is learnable. With the

square loss, the dual solution of (3.4) is ατ = (I +K(Zτ, Zτ))−1(yτ − fθ(Zτ)), where

fθ(Zτ) = [fθ(z1); . . . ; fθ(zns)]. For general loss functions, the dual problem has no

closed-form solution, but this has only ns variables (which is usually small) and can be

solved efficiently.

After the base learner has obtained the dual solution ατ, the meta-learner updates

fθ and network parameter ϕ by one gradient descent step on the validation loss

∑(x,y)∈Qτ
ℓ(ŷ, y), where ŷ ≡ fτ(z) = fθ(z)+K(Zτ, z)⊤ατ. By the chain rule, ∇(θ,ϕ)ℓ(ŷ, y) =

∇1ℓ(ŷ, y)∇(θ,ϕ)ŷ. The first component ∇1ℓ(ŷ, y) can be computed directly and the sec-

ond component is

∇(θ,ϕ)ŷ = ∇(θ,ϕ) fθ(z) + (∇(θ,ϕ)K(Zτ, z))⊤ατ + (∇(θ,ϕ)ατ)
⊤K(Zτ, z). (3.5)

Both ∇(θ,ϕ) fθ(z) and ∇(θ,ϕ)K(Zτ, z) can be obtained by direct differentiation. By the

chain rule, we have ∇(θ,ϕ)ατ = ∇pατ∇(θ,ϕ)p, where p = [fθ(z1); . . . ; fθ(zns);K(Zτ, z1);

. . . ;K(Zτ, zns)] ∈ Rns+n2
s is the input to the dual problem. ∇(θ,ϕ)p can be directly com-

puted. When the square loss is used, ∇pατ = −(I +K(Zτ, Zτ))−1
[
I | I ⊗ α⊤

τ

]
. For

a general loss, ατ is obtained by solving the convex program. Hence, ατ depends

implicitly on p and ∇pατ can be obtained by implicit differentiation. Denote the

dual objective in (3.4) by g(p, α). By the implicit function theorem [198], ∇pατ =

−
(
∇2

αg(p, ατ)
)−1 ∂2

∂p∂α g(p, ατ), where ∇2
αg(p, ατ) = ∑(xi,yi)∈Sτ

∇2
1ℓ(fτ(zi), yi)K(Zτ, zi)

K(Zτ, zi)
⊤ + K(Zτ, Zτ), ∂2

∂p∂α g(p, ατ) = [K(Zτ, Zτ)D | (K(Zτ, Zτ)D) ⊗ α⊤
τ + v⊤ ⊗

I + I ⊗ α⊤
τ], D = diag([∇2

1ℓ(fτ(z1), y1); . . . ;∇2
1ℓ(fτ(zns), yns)]), v = [∇1ℓ(fτ(z1), y1);

. . . ;∇1ℓ(fτ(zns), yns)], where ⊗ is the Kronecker product. The whole procedure, called

MetaProx, is shown in Algorithm 3. Let nϕ and nθ be the numbers of parameters in ϕ

24

Algorithm 3 MetaProx.

Require: stepsize ηt, batch size b, feature extractor NN(·; ϕ), base kernel K;
1: for t = 1, 2, · · · , T do
2: sample a batch Bt of tasks from T ;
3: base learner:
4: for τ ∈ Bt do
5: zi = NN(xi; ϕt−1) for each (xi, yi) ∈ Sτ;
6: fτ(z; α) ≡ fθt−1(z) +K(Zτ, z)⊤α denote the task model w.r.t. dual variables;
7: ατ = arg minα ∑(xi,yi)∈Sτ

ℓ(fτ(zi; α), yi) + α⊤K(Zτ, Zτ)α;
8: end for
9: meta-learner:

10: for τ ∈ Bt do
11: gτ = ∑(x,y)∈Qτ

∇(θt−1,ϕt−1)
ℓ(ŷ, y), where ŷ = fτ(z; ατ) and z = NN(x; ϕt−1);

12: end for
13: (θt, ϕt) = (θt−1, ϕt−1)−

ηt
b ∑τ∈Bt gτ;

14: end for
15: return (θT, ϕT).

and θ, respectively. Computing ∇(θ,ϕ)ℓ(ŷ, y) takes O(n3
s + n2

s (nθ + nϕ)) time, which is

linear in the number of meta-parameters. This is lower than the other meta-learning

algorithms (e.g., MAML [51] with single step takes O(n2
ϕ) time, iMAML [188]: O(n3

ϕ),

CommonMean [34]: O(d3)).

The proposed MetaProx has several advantages:

1. After kernel extension, fθ is a function in H. For nonlinear kernels (e.g., RBF

kernel, cosine kernel), fθ is nonlinear, thus, MetaProx learns a meta-regularization

for a nonlinear base learner.

2. fθ in the base learner is learnable. By setting fθ = 0, MetaProx recovers the

state-of-the-art MetaOptNet [117].

3. For square loss, ατ = (I +K(Zτ, Zτ))−1(yτ − fθt−1(Zτ)) has an efficient closed-

form solution. For general losses, the dual problem is convex and can be solved

efficiently, as the size of α is very small (only ns). Though MetaProx still requires

matrix inversion in computing meta-gradients, the size is only ns × ns, much

smaller than nϕ × nϕ in iMAML [188].

25

3.4 Theoretical Analysis

Let Lmeta(θ, ϕ) = 1
|T | ∑τ∈T ∑(x,y)∈Qτ

ℓ(fθ(z; ατ), y) be the empirical loss of general-

ization measure Eτ∼p(τ) ∑(x,y)∈Qτ
ℓ(fθ(z; ατ), y), where z = NN(x; ϕ). With the linear

kernel and square loss, the dual solution (3.2) is affine in the meta-parameter, and

so is the primal solution wτ = θ + λ−1X⊤
τ ατ. Thus, the meta-loss Lmeta(θ, ϕ) is con-

vex and convergence follows from convex optimization [15, 34]. After introducing

nonlinearity, the meta-loss is no longer convex. The following introduces Lipschitz-

smoothness assumptions, which have been commonly used in stochastic non-convex

optimization [62, 192] and meta-learning in non-convex settings [47, 284].

Assumption 3.4.1 (Smoothness). (i) The deep network NN(x; ϕ) is Lipschitz-smooth,

i.e., ∥∇ϕ NN(x; ϕ) −∇ϕ NN(x; ϕ′)∥ ≤ η1∥ϕ − ϕ′∥ with a Lipschitz constant η1 > 0;

(ii) the kernel K(z, z′) is Lipschitz-smooth w.r.t. (z, z′); (iii) fθ(z) is Lipschitz-smooth

w.r.t. (θ, z); (iv) Eτ∼T ∥∇(θ,ϕ) ∑(x,y)∈Qτ
ℓ(fθ(z; ατ), y) − ∇(θ,ϕ)Lmeta(θ, ϕ)∥2 = σ2

g,

where τ ∼ T denotes uniformly sample a task from T ; (v) ∇2
1ℓ(ŷ, y) is Lipschitz

w.r.t. ŷ, i.e., |∇2
1ℓ(ŷ, y)−∇2

1ℓ(ŷ
′, y)| ≤ η2|ŷ − ŷ′| with a Lipschitz constant η2 > 0.

The following Lemma guarantees the smoothness of the meta-loss.

Lemma 3.4.2. Lmeta(θ, ϕ) is Lipschitz-smooth w.r.t. (θ, ϕ) with a Lipschitz constant ηmeta.

Theorem 3.4.1. Let the step size be ηt = min(1/
√

T, 1/2ηmeta). Algorithm 3 satisfies

min
1≤t≤T

E∥∇(θt,ϕt)
Lmeta(θt, ϕt)∥2 = O

(
σ2

g√
T

)
,

where the expectation is taken over the random training samples.

This rate is the same as MAML [47, 95] and Meta-MinibatchProx [284]. For MAML with

J > 1 gradient steps, [95] assumes that the step size in the inner loop is of the order 1/J.

This slows down inner loop learning when J is large. On the other hand, MetaProx does

not have this restriction, as its meta-gradient depends only on the last iterate rather

than all iterates along the trajectory.

Next, we study the global convergence of MetaProx. Prior work [52, 284] focus on

the case where Lmeta(θ, ϕ) is strongly convex in (θ, ϕ). This can be restrictive in deep

learning. We instead only require ℓ(ŷ, y) to be strongly convex in ŷ. This assumption is

26

easily met by commonly-used loss functions such as the square loss and logistic loss

with a compact domain. A recent work [234] studies the global convergence of MAML

in over-parameterized neural networks. Over-parameterization is closely related to the

assumption of uniform conditioning [90, 116, 134].

Assumption 3.4.3 (Uniform conditioning [134]). A multivariable function M(θ, ϕ) is

µ-uniformly conditioning if its tangent kernel [90] satisfies

min
(θ,ϕ)

λmin(∇(θ,ϕ)M(θ, ϕ)∇⊤
(θ,ϕ)M(θ, ϕ)) ≥ µ > 0,

where λmin(·) is the smallest eigenvalue of the matrix argument.

Assume that the loss ℓ(·, ·) is ρ-strongly convex w.r.t. the first argument and Assump-

tion 3.4.1 holds. Let xτ,j be the jth query example of task τ, zτ,j be its embedding,

and ŷτ,j = fθ(zτ,j) + K(Zτ, zτ,j)
⊤ατ be its prediction, where ατ is the dual solution.

Let M(θ, ϕ) =
[
ŷτ1,1; . . . ; ŷτ1,nq ; . . . ; ŷτ|T |,1; . . . ; ŷτ|T |,nq

]
be an auxiliary function which

maps the meta-parameter to predictions on all query examples. The following Theorem

shows that the proposed algorithm converges to a global minimum of the empirical

risk Lmeta(θ, ϕ) at the rate of O(σ2
g/

√
T). The rate is improved to exponential if the

meta-learner adopts full gradient descent.

Theorem 3.4.2. Assume M(θ, ϕ) is uniform conditioning. (i) Let ηt = min(1/
√

T, 1/2ηmeta).

Algorithm 3 satisfies min1≤t≤T ELmeta(θt, ϕt)− min(θ,ϕ) Lmeta(θ, ϕ) = O
(

σ2
g/

√
T
)
, where

the expectation is taken over the random training samples. (ii) Let ηt=η<min(1/2ηmeta, 4|T |/ρµ)

and Bt = T . Algorithm 3 satisfies Lmeta(θt, ϕt)−min(θ,ϕ) Lmeta(θ, ϕ) = O((1− ηρµ/4|T |)t).

3.5 Experiments on Few-shot Regression

Data sets. Experiments are performed on three data sets.

(i) Sine. This is the sinusoid regression problem in [51]. Samples x’s are uniformly

sampled from [−5, 5]. Each task τ learns a sine function y = aτ sin(x + bτ) + ξ, where

aτ ∈ [0.1, 5], bτ ∈ [0, π], and ξ ∼ N (0, σ2
ξ) is the label noise. We consider both σ2

ξ = 0

(noise-free) and σ2
ξ = 1. In addition to the 5-shot setting in [51], we also evaluate on

the more challenging 2-shot setting. We randomly generate a meta-training set of 8000

27

tasks, a meta-validation set of 1000 tasks for early stopping, and a meta-testing set of

2000 tasks for performance evaluation.

(ii) Sale. This is a real-world dataset from [221], which contains weekly purchased

quantities of 811 products over 52 weeks. For each product (task), a sample is to predict

the sales quantity for the current week from sales quantities in the previous 5 weeks.

Thus, each product contains 47 samples. We evaluate on the 5-shot and 1-shot settings.

We randomly split the tasks into a meta-training set of 600 tasks, a meta-validation set

of 100 tasks, and a meta-testing set of 111 tasks.

(iii) QMUL, which is a multiview face dataset [64] from Queen Mary University of

London. This consists of grayscale face images of 37 people (32 for meta-training and

5 for meta-testing). We follow the setting in [169] and evaluate the model on 10-shot

regression. Each person has 133 facial images covering a viewsphere of ±90 in yaw

and ±30 in tilt at 10 increment. A task is a trajectory taken from the discrete manifold

for images from the same person. The regression goal is to predict the tilt given an

image. In the in-range setting, meta-training tasks are sampled from the entire manifold.

In the more challenging out-of-range setting, meta-training tasks are sampled from the

sub-manifold with yaw in [−90, 0]. In both settings, meta-testing tasks are sampled

from the entire manifold. We randomly sample 2400 tasks for meta-training, and 500

tasks for meta-testing. As in [169], we do not use a meta-validation set since the dataset

is small.

Network Architecture. For Sine and Sale, we use the network in [51], which is a small

multilayer perceptron with two hidden layers of size 40 and ReLU activation. For

QMUL, we use the three-layer convolutional neural network in [169]. The embeddings

are always from the last hidden layer. We use a simple linear kernel as base kernel, and

fθ(z) = θ⊤z.

Implementation Details. We use the Adam optimizer [108] with a learning rate of 0.001.

Each mini-batch has 16 tasks. For Sine and Sale, the model (ϕ and fθ) is meta-trained

for 40, 000 iterations. To prevent overfitting on the meta-training set, we evaluate the

meta-validation performance every 500 iterations, and stop training when the loss on

the meta-validation set has no significant improvement for 10 consecutive evaluations.

For QMUL, we follow [169] and meta-train the model for 100 iterations. We repeat each

experiment 30 times. For performance evaluation, we use the average mean squared

error (MSE) on the meta-testing set.

28

Table 3.1: Average MSE (with 95% confidence intervals) of few-shot regression on the
Sine and Sale datasets. (The confidence intervals in Sale experiments are ±0.001 for all
methods)

Sine (2-shot) Sine (5-shot) Sale

noise-free noisy noise-free noisy 1-shot 5-shot

CommonMean [34] 4.58 ± 0.07 4.59 ± 0.07 4.29 ± 0.06 4.31 ± 0.06 0.090 0.074
MAML [51] 1.24 ± 0.12 1.91 ± 0.13 0.41 ± 0.03 1.15 ± 0.05 0.069 0.063

iMAML [188] 1.12 ± 0.11 1.84 ± 0.10 0.38 ± 0.02 1.02 ± 0.05 0.068 0.063
Meta-MinibatchProx [284] 1.15 ± 0.08 1.87 ± 0.09 0.37 ± 0.02 1.01 ± 0.03 0.081 0.064

MetaOptNet-RR [117] 0.18 ± 0.01 0.79 ± 0.01 0.01 ± 0.00 0.19 ± 0.01 0.088 0.068
MetaProx 0.11 ± 0.01 0.43 ± 0.01 0.01 ± 0.00 0.13 ± 0.01 0.061 0.060

Baselines. On Sine and Sale, we compare MetaProx with CommonMean [34], MAML [51],

MetaOptNet-RR [117], Meta-MinibatchProx [284], and iMAML [188]. CommonMean is

a linear model, and MetaOptNet-RR is equivalent to MetaProx when fθ = 0. Follow-

ing [51], we set the number of inner gradient steps for MAML to 1 during meta-training,

and 20 during meta-validation and meta-testing. Both Meta-MinibatchProx [284] and

iMAML [188] are meta-regularization approaches. For QMUL, we compare MetaProx

with the baselines reported in [169] (i.e., DKT [169], Feature Transfer [41], and MAML).

As further baselines, we also compare with Meta-MinibatchProx and MetaOptNet-RR

to evaluate the improvement of MetaProx due to the learnable fθ.

Results on Sine. Figure 3.1 shows the convergence curves of MetaProx and the baselines.

We do not show the convergence of CommonMean, as it does not use a neural network

backbone as the other methods. As can be seen, MetaProx converges much faster and

better than the non-kernel-based methods (MAML, iMAML and Meta-MinibatchProx).

In the 2-shot settings, MetaProx converges to a loss smaller than that of MetaOptNet-RR.

Figure 3.2 shows the learned functions on 2 meta-testing tasks (τ1 with (a = 4.6, b = 3.2)

and τ2 with (a = 3.7, b = 0.5)) in the 5-shot setting and more challenging 2-shot setting.

As can be seen, MetaProx always fits the target curve well. Though MAML, iMAML

and Meta-MinibatchProx can fit the support samples, it performs worse in regions far

from the support samples. This is especially noticeable in the 2-shot setting.

Table 3.1 shows the MSE on the meta-testing set. Obviously, CommonMean (a linear

model) fails in this nonlinear regression task. MetaProx and MetaOptNet-RR signifi-

cantly outperforms the other baselines. MetaProx (with the learned fθ) performs better

than MetaOptNet-RR, particularly when the data is noisy.

29

(a) 2-shot, σ2
ξ = 0. (b) 2-shot, σ2

ξ = 1.

(c) 5-shot, σ2
ξ = 0. (d) 5-shot, σ2

ξ = 1.

Figure 3.1: Convergence curves for few-shot sinusoid regression.

Results on Sale. As can be seen from Table 3.1, the linear model (CommonMean) per-

forms poorly as expected. MetaProx again outperforms the other baselines, particularly

in the more challenging 1-shot setting.

Results on QMUL. Table 3.2 shows that MetaProx achieves the lowest MSE and the ker-

nel methods (DKT+RBF, DKT+Spectral, MetaOptNet-RR, and MetaProx) perform better

than non-kernel-based methods (Feature Transfer, MAML, and Meta-MinibatchProx).

MetaProx with the learnable fθ reduces the errors of MetaOptNet-RR by half.

30

(a) task τ1, σ2
ξ = 0. (b) task τ1, σ2

ξ = 1.

(c) task τ2, σ2
ξ = 0. (d) task τ2, σ2

ξ = 1.

(e) task τ1, σ2
ξ = 0. (f) task τ1, σ2

ξ = 1.

(g) task τ2, σ2
ξ = 0. (h) task τ2, σ2

ξ = 1.

Figure 3.2: Sinusoid regression: Two meta-testing tasks τ1 and τ2 with different σξ ’s in
2-shot ((a) –(d)) and 5-shot ((e)–(h)) settings.

3.6 Experiments on Few-shot Classification

Datasets. We use the standard 5-way K-shot setting (K = 1 or 5) on mini-ImageNet [231],

which consists of 100 randomly chosen classes from ILSVRC-2012 [199]. Each class

contains 600 84× 84 images. We use the commonly-used split in [191]: the 100 classes are

31

Table 3.2: Average MSE (with 95% confidence intervals) of few-shot regression on
QMUL (10-shot). Results of the first four methods are from [169].

in-range out-of-range

Feature Transfer [41] 0.22 ± 0.03 0.18 ± 0.01
MAML [51] 0.21 ± 0.01 0.18 ± 0.02

DKT + RBF [169] 0.12 ± 0.04 0.14 ± 0.03
DKT + Spectral [169] 0.10 ± 0.02 0.11 ± 0.02

Meta-MinibatchProx [284] 0.171 ± 0.022 0.193 ± 0.025
MetaOptNet-RR [117] 0.021 ± 0.007 0.039 ± 0.009

MetaProx 0.012 ± 0.003 0.020 ± 0.005

randomly split into 64 for meta-training, 16 for meta-validation, and 20 for meta-testing.

Network Architecture. For the network backbone, we use the Conv4 in [51, 231] and

ResNet-12 in [117]. As the cosine similarity is more effective than ℓ2 distance in few-shot

classification [22], we adopt the cosine kernel K(z, z′) = cos(z, z′) as base kernel, where

z is the embedding of sample x extracted from the last hidden layer as in regression.

For each c = 1, . . . , 5, f
θ(c)

= [Kq(1) ; . . . ;Kq(5)]⊤θ(c) is a weighted prototype classifier on

the embedding space, where q(1), . . . , q(5) are the class centroids computed from Sτ,

and the weights {θ(1), . . . , θ(5)} are meta-parameters.

Baselines. We compare MetaProx with the state-of-the-arts: (i) meta-initialization:

MAML [51] and its variants FOMAML [51], and REPTILE [157]; (ii) meta-regularization:

iMAML [188] and Meta-MinibatchProx [284]; and (iii) metric learning: ANIL [186],

R2D2 [11], ProtoNet [216], and MetaOptNet [117] with SVM using the linear kernel and

cosine kernel.

Implementation Details. The entire model is trained end-to-end. ℓ(ŷ, y) is the cross-

entropy loss. The CVXPYLayers package [2] is used to solve the dual problem. We train

the model for 80, 000 iterations, and each mini-batch has 4 tasks. We use the Adam

optimizer [108] with an initial learning rate of 0.001, which is then reduced by half every

2, 500 iterations. To prevent overfitting, we evaluate the meta-validation performance

every 500 iterations, and stop training when the meta-validation accuracy has no

significant improvement for 10 consecutive evaluations. We report the classification

accuracy averaged over 600 tasks randomly sampled from the meta-testing set.

Results. Tables 3.3 and 3.4 show the results for Conv4 and ResNet-12, respectively. As

can be seen, MetaProx is always the best. Compared with MetaOptNet-SVM, MetaProx

32

Table 3.3: Accuracies (with 95% confidence intervals) of 5-way few-shot classification
on mini-ImageNet using Conv4. † means that the result is obtained by rerunning the code
with our setup here. Other results from their original publications (Result on the 5-shot
setting is not reported in iMAML [188]).

1-shot 5-shot

MAML [51] 48.7 ± 1.8 63.1 ± 0.9
FOMAML [51] 48.1 ± 1.8 63.2 ± 0.9
REPTILE [157] 50.0 ± 0.3 66.0 ± 0.6
iMAML [188] 49.0 ± 1.8 −

Meta-MinibatchProx [284] 50.8 ± 0.9 67.4 ± 0.9
ANIL [186] 46.7 ± 0.4 61.5 ± 0.5
R2D2 [11] 49.5 ± 0.2 65.4 ± 0.3

ProtoNet [216] 49.4 ± 0.8 68.2 ± 0.7
MetaOptNet-SVM(lin)† [117] 49.8 ± 0.9 66.9 ± 0.7
MetaOptNet-SVM(cos)† [117] 50.1 ± 0.9 67.2 ± 0.6

MetaProx 52.4 ± 1.0 68.8 ± 0.8

Table 3.4: Accuracies (with 95% confidence intervals) of 5-way few-shot classification
on mini-ImageNet using ResNet-12. † means that the result is obtained by rerunning the
code with our setup here.

1-shot 5-shot

FOMAML† [51] 57.41 ± 0.71 72.12 ± 0.54
ANIL† [186] 59.66 ± 0.68 73.28 ± 0.49

ProtoNet [216] 59.25 ± 0.64 75.60 ± 0.48
MetaOptNet-SVM(lin)† [117] 62.31 ± 0.64 78.21 ± 0.42
MetaOptNet-SVM(cos)† [117] 62.75 ± 0.42 78.68 ± 0.24

MetaProx 63.82 ± 0.23 79.12 ± 0.18

is better due to the learnable regularizer.

3.7 Conclusion

In this chapter, we propose MetaProx, an effective meta-regularization algorithm for

meta-learning. MetaProx combines deep kernel and meta-regularization. By reformulat-

ing the inner problem in the dual space, a learnable proximal regularizer is introduced

to the base learner. The meta-parameters in the regularizer and network are updated by

the meta-learner. We also establish convergence of MetaProx. Extensive experiments on

33

standard datasets for regression and classification verify the effectiveness of learning a

proximal regularizer. Furthermore, MetaProx is more computationally efficient than

existing non-kernel-based methods.

34

CHAPTER 4

Subspace Meta-Learning

4.1 Introduction

Typical meta-learning algorithms [51, 34, 188, 284] learn a globally-shared meta-model

for all tasks. For example, the Model-Agnostic Meta-Learning (MAML) algorithm [51]

learns a meta-initialization such that a good model for an unseen task can be finetuned

from limited samples by a few gradient updates. MetaProx proposed in Chapter 3

seeks a common meta-regularization for all task models. However, when the task

environments are complex and heterogeneous, task model parameters are diverse and

a single meta-model may not be sufficient to capture all the meta-knowledge.

To tackle this issue, a variety of methods have been proposed to learn structured meta-

knowledge by exploring the task structure [93, 259, 260, 285, 229]. For example, [93]

formulate the task distribution as a mixture of hierarchical Bayesian models, and update

the components (i.e., initializations) using an Expectation Maximization procedure.

TSA-MAML [285] first trains task models using vanilla MAML. Tasks are grouped into

clusters by k-means clustering, and cluster centroids form group-specific initializations.

Alternatively, task model parameters can be formulated into a subspace. In the linear

regression setting where task model vectors are sampled from a low-dimensional sub-

space, recent attempts [111, 229] use a moment-based estimator to recover the subspace

based on the property that the column space of the sample covariance matrix recovers

the underlying subspace. However, for nonlinear models such as deep networks, this

nice property no longer holds and the moment-based methods cannot be generalized.

In this chapter, we propose a model-agnostic algorithm called MUSML (MUltiple

Subspaces for Meta-Learning). Each subspace represents one type of meta-knowledge,

and subspace bases are treated as meta-parameters. For each task, the base learner builds

a task model from each subspace. The meta-learner then updates the subspace bases by

minimizing a weighted validation loss of the task models. We theoretically establish

upper bounds on the population risk, empirical risk and generalization gap. All these

bounds depend on the complexity of the subspace mixture (number of component

35

subspaces and subspace dimensionality). Experiments on various datasets verify the

effectiveness of the proposed MUSML.

Our major contributions are four-fold: (i) We formulate task model parameters into a

subspace mixture and propose a novel algorithm to learn the subspace bases. (ii) The

proposed MUSML is model-agnostic and can be used on linear and nonlinear mod-

els. (iii) We theoretically study the generalization properties of the learned subspaces.

(iv) We perform extensive experiments on synthetic and real-world datasets. Results on

the synthetic dataset confirm that MUSML is able to discover the underlying subspaces

of task model parameters. Results on the real-world datasets demonstrate superiority

of MUSML over the state-of-the-arts.

4.2 Learning Multiple Subspaces for Meta-Learning

4.2.1 Linear Regression Tasks

We first focus on the linear setting, where the task is linear regression and all task

parameters lie in one single (linear) subspace. The following proposition shows that the

underlying subspace can be recovered using a moment-based estimator. All proofs of

theoretical results in this chapter are in the Appendix.

Proposition 4.2.1. [111, 229]. Assume that p(τ) is a distribution of linear regression tasks.

Each task τ is associated with a w⋆
τ ∈ Rd, and its samples are generated as y = x⊤w⋆

τ + ξ,

where x ∼ N (0, I) and ξ ∼ N (0, σ2
ξ) is the noise. Then, Eτ∼p(τ)E(x,y)∼τ,(x′,y′)∼τyy′xx′⊤ =

Eτ∼p(τ)w⋆
τw⋆⊤

τ .

Proposition 4.2.1 shows that Ŝ ≡ 1
|B| ∑τ∈B yτy′τxτx′⊤τ is an unbiased estimator of

Eτ∼p(τ)w⋆
τw⋆⊤

τ , where (xτ, yτ) and (x′τ, y′τ) are two samples drawn from τ, and B
is a collection of tasks. Hence, the column space of Ŝ recovers the column space of

Eτ∼p(τ)w⋆
τw⋆⊤

τ (i.e., the underlying subspace) when the number of tasks is sufficient.

4.2.2 The Proposed MUSML

While Proposition 4.2.1 can be used to recover the column space in a linear meta-learning

setting, extension to the nonlinear setting (such as deep networks) is difficult. To

36

address this problem, we propose a model-agnostic algorithm called MUSML (MUltiple

Subspaces for Meta-Learning). We assume that the model parameters wτ’s lie in K

subspaces {S1, . . . ,SK}, which can be seen as an approximation to a nonlinear manifold.

For simplicity, we assume that all K subspaces have the same dimensionality m (this can

be easily extended to the case where the subspaces have different dimensionalities). Let

Sk ∈ Rd×m be a basis of Sk. {S1, . . . , SK} are then the meta-parameters to be learned.

The proposed procedure is shown in Algorithm 4. Given a task τ, the base learner

searches for the model parameter wτ over all subspaces with fixed Sk (steps 4-11). In

each subspace Sk, we search for the best linear combination v⋆
τ,k of the subspace’s basis

to form wτ:

v⋆
τ,k = arg min

vτ∈Rm
L(Sτ; Skvτ). (4.1)

Skv⋆
τ,k is then the task model parameter corresponding to the kth subspace. When

ℓ(f (x; w), y) is convex in w, it is easy to verify that L(Sτ; Skvτ) is also convex in vτ.

Hence, problem (4.1) can be solved as a convex program [15]. However, for nonlinear

models such as deep networks, the loss function in (4.1) is nonconvex, and thus finding

v⋆
τ,k is computationally intractable. Instead, we seek an approximate minimizer vτ,k by

performing J gradient descent steps from an initialization v(0)
τ,k , i.e.,

v(t′+1)
τ,k = v(t′)

τ,k − α∇
v(t′)

τ,k
L(Sτ; Skv(t′)

τ,k),

where α > 0 is the step size and vτ,k ≡ v(J)
τ,k.

At meta-training, one can assign τ to the subspace with the best training set performance.

However, this is inefficient for learning meta-parameters since only one subspace is

updated at each step. Similar to DARTS [135], we relax the categorical choice to a

softmax selection over all candidate subspaces. The relaxed operation is differentiable

and all subspace bases can then be updated simultaneously, which accelerates learning.

Let oτ,k = L(Sτ; Skvτ,k) be the training loss for task τ when the kth subspace (where

k = 1, . . . , K) is used to construct its task model. The meta-learner updates {S1, . . . , SK}
by performing one gradient update on the weighted validation loss (steps 13-14):

K

∑
k=1

exp(−oτ,k/γ)

∑K
k′=1 exp(−oτ,k′/γ)

L(Qτ; Skvτ,k), (4.2)

where γ > 0 is the temperature. When γ is close to 0, the softmax selection becomes

one-hot; whereas when γ increases to ∞, the selection becomes uniform. In practice,

37

Algorithm 4 MUltiple Subspaces for Meta-Learning (MUSML).
Require: stepsize α, {ηt}; number of inner gradient steps J, number of subspaces

K, subspace dimension m, temperature {γt}; initialization v(0);
1: for t = 0, 1, . . . , T − 1 do
2: sample a task τ with Sτ and Qτ;
3: base learner:
4: for k = 1, . . . , K do
5: initialize v(0)

τ,k = v(0);
6: for t′ = 0, 1, . . . , J − 1 do
7: v(t′+1)

τ,k = v(t′)
τ,k − α∇

v(t′)
τ,k
L(Sτ; Sk,tv

(t′)
τ,k);

8: end for
9: vτ,k ≡ v(J)

τ,k;
10: oτ,k = L(Sτ; Sk,tvτ,k);
11: end for
12: meta-learner:
13: Lvl = ∑K

k=1
exp(−oτ,k/γt)

∑K
k′=1 exp(−oτ,k′/γt)

L(Qτ; Sk,tvτ,k);

14: {S1,t+1, . . . , Sk,t+1} = {S1,t, . . . , Sk,t} − ηt∇{S1,t,...,Sk,t}Lvl;
15: end for
16: Return S1,T, . . . , SK,T.

we start at a high temperature and anneal to a small but nonzero temperature as in

[91, 26, 286]. Note that {oτ,k : k = 1, . . . , K} depend on the bases and ∇{S1,...,Sk}oτ,k can

be computed by auto-differentiation.

At meta-testing, for each testing task τ′, we assign τ′ to the subspace with the lowest

training loss, i.e., wτ′ = Skτ′ vτ′,kτ′ , where kτ′ ≡ arg min1≤k≤K L(Sτ′ ; Skvτ′,k) is the

chosen subspace index.

4.3 Theoretical Analysis

In this section, we study the generalization performance of the learned subspace bases

S ≡ {S1, . . . , SK} at meta-testing. The following assumptions on smoothness and

compactness are standard in meta-learning [8, 66, 47] and bilevel optimization [55, 8].

The boundedness assumption on the loss function is widely used in analyzing the

generalization of meta-learning algorithms [149, 173, 3] and traditional machine learning

algorithms [14].

Assumption 4.3.1. (i) ℓ(f (x; w), y) and ∇wℓ(f (x; w), y) are ϱ-Lipschitz and β-Lipschitz

in w, respectively;1 (ii) {vτ,k : τ ∼ p(τ), k = 1, . . . , K} and column vectors of Sk

1∥ℓ(f (x; w), y)−ℓ(f (x; w′), y)∥≤ϱ∥w−w′∥ and ∥∇wℓ(f (x; w), y)−∇wℓ(f (x; w′), y)∥ ≤ β∥w−w′∥.

38

(k = 1, . . . , K) are in a compact set, and their ℓ2-norms are upper bounded by a constant

ρ > 0. (iii) ℓ(·, ·) is upper bounded by a constant ν > 0.

Let R(S) ≡ Eτ′EDtr
τ′
E(x,y)∼τ′ℓ(f (x; Skτ′ vτ′,kτ′), y) be the expected population risk, and

R̂(S) ≡ Eτ′EDtr
τ′
L(Dtr

τ′ ; Skτ′ vτ′,kτ′) be the expected empirical risk averaged over all tasks.

The following Theorem characterizes the generalization gap, i.e., the gap between the

population and empirical risks.

Theorem 4.3.1. With Assumption 4.3.1, we have

R(S) ≤ R̂(S)+K

√
ν2 + 12ϱν(1 + mαδ)J

2ns
, (4.3)

where δ = βρ2 > 0.

The proof is based on the connection between generalization and stability [14]. The

dependence on ns in (4.3) agrees with their Theorem 11, as the stability constant in

Algorithm 6 is of the order O(1/ns). From (4.3), one can observe that increasing the

subspace complexity (i.e., m or K) increases the upper bound of R(S)− R̂(S).

For notation simplicity, throughout this section, we omit the superscript τ′. Let z ≡ (x, y)

be the samples, ℓ(z; w) ≡ ℓ(f (x; w), y), and ∇wℓ(f (z; Sv)) ≡ ∇wℓ(f (z; w)) |w=Sv.

We first show the stability constant (in Lemma 9 of [14]) in Algorithm 4 is of the order

O(1/ns).

Let {z′i : i = 1, . . . , ns} be another ns samples from τ. Let S (i)
τ be another training set

which differs from Sτ only in the ith sample (i.e., S (i)
τ ≡ (Sτ −{zi})∪ {z′i}). We let vτ,k,i

(resp. vτ,k) be the task model obtained from the base learner when using the training

set S (i)
τ (resp. Sτ).

Lemma 4.3.2 (Lemma 9 of [14]). Let D = {z1, . . . , zm} be a dataset containing m samples.

For any learning algorithm A (receives a training set and outputs a learned model) and loss

function ℓ such that 0 ≤ ℓ(·) ≤ M, we have

ED [Ezℓ(z;A(D))−R(D;A(D))]2 ≤ M2

2m
+ 3MED,z′i

|ℓ(zi;A(D))− ℓ(zi;A(D(i)))|

for any i∈{1, . . . , m}, where D(i) is a dataset obtained by replacing zi with z′i, and R(D;A(D))

is the empirical risk.

39

Lemma 4.3.3. For the base learner in Algorithm 4, we have

ESτ
Ez′i∼τ |ℓ(f (xi; Skvτ,k), yi)− ℓ(f (xi; Skvτ,k,i), yi)| ≤

2ϱ(1 + αβρ2m)J

ns
.

Let w⋆
τ′ ≡ arg minwτ′ E(x,y)∼τ′ℓ(f (x; wτ′), y) be the optimal task model for task τ′, and

R⋆ ≡ Eτ′E(x,y)∼τ′ℓ(f (x; w⋆
τ′), y) be the minimum expected loss averaged over all tasks.

The following Theorem provides an upper bound on the expected excess risk [285]

R(S)−R⋆, which compares the performance of the learned task model with that of

the optimal model.

Theorem 4.3.2. With Assumption 4.3.1, we have

R(S)−R⋆ ≤ ρ
√

m Eτ′EDtr
τ′
∥vτ′,kτ′ − v⋆

τ′,kτ′
∥

+ϱEτ′EDtr
τ′

dist(w⋆
τ′ ,Skτ′)+K

√
ν2+12ϱν(1+mαδ)J

2ns
,

where dist(w⋆
τ′ ,Skτ′)≡minw∈Sk

τ′
∥w − w⋆

τ′∥ is the distance between w⋆
τ′ and Skτ′ .

From Theorem 4.3.2, R(S)−R⋆ is upper-bounded by three terms: (i) The first term

measures the distance between the approximate minimizer vτ′,kτ′ and exact minimizer

v⋆
τ′,kτ′

; (ii) The second term arises from the approximation error of w⋆
τ′ using the learned

subspaces; (iii) The third term depends on the complexity of subspaces (i.e., m and

K). For the centroid-based clustering method in [285], the upper bound of its expected

excess risk contains a term Eτ′EDtr
τ′
∥ωk⋆

τ′
− w⋆

τ′∥2, where ωk⋆
τ′

is the centroid of the

cluster that τ′ is assigned to. The distance ∥ωk⋆
τ′
− w⋆

τ′∥2 plays the same role as the term

dist(w⋆
τ′ ,Skτ′) in Theorem 4.3.2, which measures how far the optimal model w⋆

τ′ is away

from the subspaces or clusters.

4.4 Experiments on Few-shot Regression

4.4.1 Synthetic Data

In this experiment, we use a synthetic 1-dimensional data set to examine whether

MUSML can discover subspaces in which the task model parameters lie. We use a

5-shot regression setting, with 14, 000 meta-training, 2, 000 meta-validation, and 6, 000

40

meta-testing tasks. The model for task τ is f (x; wτ) = exp(0.1wτ,1x) + wτ,2| sin(x)|, in

which wτ = [wτ,1; wτ,2] is randomly sampled from one of the two subspaces: (i) Line-A:

wτ = S1aτ + 0.1ξτ, where S1 = [1; 1], aτ ∼ U (1, 5), and ξτ ∼ N (0; I); and (ii) Line-B:

wτ = S2aτ + 0.1ξτ, where S2 = [−1; 1], aτ ∼ U (0, 2), and ξτ ∼ N (0; I). The samples of

task τ are generated as y = f (x; wτ) + 0.05ξ, where x ∼ U (−5, 5) and ξ ∼ N (0, 1). The

experiment is repeated 10 times with different seeds.

The subspace bases are trained for T = 30, 000 iterations using the Adam optimizer [108].

For the meta-learner, the initial learning rate is 0.001, which is then reduced by half

every 5, 000 iterations. The base learner uses a learning rate of α = 0.05, v(0) = 1
m 1,

and J is 5 (resp. 20) at meta-training (resp. meta-testing). The temperature is γt =

max(10−5, 0.5 − t/T), a linear annealing schedule as in [26, 286]. To prevent overfitting,

we evaluate the meta-validation performance every 2, 000 iterations, and stop training

when the meta-validation accuracy has no significant improvement for 5 consecutive

evaluations.

The proposed MUSML (with K = 2, m = 1) is compared with the following meta-

learning baselines: (i) MAML [51], (ii) BMG [54], which uses target bootstrap, and

structured meta-learning algorithms, including (iii) Dirichlet process mixture model

(DPMM) [93], (iv) hierarchically structured meta-learning (HSML) [259], (v) automated

relational meta-learning (ARML) [260] using a graph structure, and (vi) task similarity

aware meta-learning (TSA-MAML) [285] with different numbers of clusters. We use

these baselines’ official implementations (except for DPMM and BMG whose imple-

Table 4.1: Meta-testing MSE (with standard deviation) of 5-shot regression on synthetic
data. For TSA-MAML, the number in brackets is the number of clusters used.

MAML [51] 0.74 ± 0.03
BMG [54] 0.67 ± 0.03

DPMM [93] 0.56 ± 0.09
HSML [259] 0.49 ± 0.10
ARML [260] 0.60 ± 0.07

TSA-MAML(2) [285] 0.58 ± 0.10
TSA-MAML(10) [285] 0.24 ± 0.09
TSA-MAML(20) [285] 0.12 ± 0.10
TSA-MAML(40) [285] 0.14 ± 0.09
TSA-MAML(80) [285] 0.13 ± 0.08

MUSML 0.07 ± 0.01

41

−2 0 2 4
w1

1

2

3

4

5
w
2

(a) Tasks from Line-A.

−2 −1 0
w1

0.0

0.5

1.0

1.5

2.0

w
2

(b) Tasks from Line-B.

Figure 4.1: Visualization of task model parameters.

Table 4.2: Average Euclidean distance (with standard deviation) between the estimated
task model parameters and ground-truth in 5-shot setting on synthetic data. For TSA-
MAML, the number in brackets is the number of clusters used.

MAML [51] 1.69 ± 0.02
BMG [54] 1.55 ± 0.03

DPMM [93] 0.85 ± 0.10
HSML [259] 0.80 ± 0.09
ARML [260] 0.91 ± 0.11

TSA-MAML(2) [285] 0.88 ± 0.12
TSA-MAML(10) [285] 0.47 ± 0.19
TSA-MAML(20) [285] 0.33 ± 0.18
TSA-MAML(40) [285] 0.36 ± 0.19
TSA-MAML(80) [285] 0.36 ± 0.18

MUSML 0.17 ± 0.01

mentations are not publicly available). For performance evaluation, the mean squared

error (MSE) on the meta-testing set is used.

Results. Table 4.1 shows the meta-testing MSE. As can be seen, structured meta-learning

methods (DPMM, HSML, ARML, TSA-MAML, and MUSML) are significantly better

than methods with a globally-shared meta-model (MAML and BMG). In particular,

MUSML performs the best. Furthermore, simply increasing the number of clusters in

TSA-MAML fails to beat MUSML.

42

Table 4.3: Meta-testing MSE (with standard deviation) of 15-shot regression on Pose.
Results on MAML and MR-MAML are from [265].

MAML [51] 5.39 ± 1.31
MR-MAML [265] 2.26 ± 0.09

BMG [54] 2.16 ± 0.15

DPMM [93] 1.99 ± 0.08
HSML [259] 2.04 ± 0.13
ARML [260] 2.21 ± 0.15

TSA-MAML [285] 1.96 ± 0.07
MUSML 1.83 ± 0.05

Figure 4.1 visualizes the task model parameters obtained by TSA-MAML(2) and MUSML

on 100 randomly sampled meta-testing tasks (50 per subspace). As can be seen, MUSML

successfully discovers the underlying subspaces, while the centroid-based clustering

method TSA-MAML does not. Table 4.2 shows the average Euclidean distance between

the estimated task model parameters and the ground truth. As can be seen, MUSML is

more accurate in estimating the task models, confirming the effectiveness of the learned

subspaces.

4.4.2 Pose Data

While the synthetic data used in the previous experiment is tailored for the proposed

subspace model, in this section, we perform experiments on a real-world pose prediction

dataset from [265]. This is created based on the Pascal 3D data [250]. Each object contains

100 samples, where input x is a 128× 128 grey-scale image and output y is its orientation

relative to a fixed canonical pose. Following [265], we adopt a 15-shot regression setting

and randomly select 50 objects for meta-training, 15 for meta-validation, and 15 for

meta-testing. The experiment is repeated 15 times with different seeds.

The MR-MAML regularization [265] is used on all the methods except the vanilla

MAML. MUSML uses the same encoder-decoder network in [265] as the model f (x; w).

Hyperparameters K and m, as well as the number of clusters in TSA-MAML, are chosen

from 1 to 5 using the meta-validation set. For performance evaluation, the MSE on the

meta-testing set is used.

Table 4.3 shows the meta-testing MSE. As can be seen, MUSML is again better than the

other baselines, confirming the effectiveness of the learned subspaces.

43

Figure 4.2: Some random images from the meta-testing set of Meta-Dataset-BTAF (Top
to bottom: Bird, Texture, Aircraft, and Fungi).

Table 4.4: Statistics of the datasets.

#classes
(meta-training/meta-validation/meta-testing)

Bird 64/16/20
Texture 30/7/10
Aircraft 64/16/20
Fungi 64/16/20

CIFAR-FS 64/16/20
mini-ImageNet 64/16/20

Omniglot 71/15/16

4.5 Experiments on Few-shot Classification

4.5.1 Experimental Setup

Setup. In this experiment, we use three meta-datasets: (i) Meta-Dataset-BTAF, proposed

in [259], which consists of four image classification datasets: (a) Bird; (b) Texture; (c) Air-

craft; and (d) Fungi. Sample images are shown in Figure 4.2. (ii) Meta-Dataset-ABF,

proposed in [285], which consists of Aircraft, Bird, and Fungi. (iii) Meta-Dataset-CIO,

which consists of three widely-used few-shot datasets: CIFAR-FS [11], mini-ImageNet

[231], and Omniglot [113]. We use the meta-training/meta-validation/meta-testing

splits in [260, 285, 113]. A summary of the datasets is in Table 4.4.

44

As for the network architecture, we use the standard Conv4 backbone [51, 260, 285],

and a simple prototype classifier with cosine similarity on top [216, 63] as f (x; w).

Hyperparameters K and m are chosen from 1 to 5 on the meta-validation set.

We use the cross-entropy loss for ℓ(·, ·). The number of parameters in Conv4 is 113, 088.

For the base learner, α = 0.01, v(0) = 1
m 1, and J is set to 5 (resp. 15) at meta-training (resp.

meta-validation or meta-testing). We train the subspace bases for T = 100, 000 iterations

using the Adam optimizer [108] with an initial learning rate of 0.001, which is then

reduced by half every 5, 000 iterations. The temperature is set to γt = max(10−5, 0.8 −
t/T), which is again a linear annealing schedule [26, 286]. To prevent overfitting,

we evaluate the meta-validation performance every 2, 000 iteration and stop training

when the meta-validation accuracy has no significant improvement for 5 consecutive

evaluations. Hyperparameters K and m are chosen from 1 to 5 on the meta-validation

set. In practice, as shown in Section 4.5.5, m can simply be fixed at 2, and K can be

chosen from 3 to 4. As the search space of K is small, the additional cost of tuning K

and m is small.

MUSML is compared with the following state-of-the-arts in the 5-way 5-shot and 5-

way 1-shot settings: (i) meta-learning algorithms with a globally-shared meta-model,

including MAML, ProtoNet, ANIL [186], and BMG; (ii) structured meta-learning algo-

rithms, including DPMM, HSML, ARML, TSA-MAML and its variant using ProtoNet

as the base learner (denoted TSA-ProtoNet). The number of clusters in TSA-MAML

and TSA-ProtoNet are tuned from 1 to 5 on the meta-validation set. For performance

evaluation, the classification accuracy on the meta-testing set is used. The experiment is

repeated 5 times with different seeds.

4.5.2 Meta-Dataset-BTAF

Table 4.5 shows the 5-shot results. As can be seen, MUSML is more accurate than

both structured and unstructured meta-learning methods, demonstrating the benefit of

structuring task model parameters into subspaces. Figure 4.3 shows the assignment of

tasks to the learned subspaces in MUSML. As can be seen, meta-training tasks from the

same dataset are always assigned to the same subspace, demonstrating that MUSML

can discover the task structure from meta-training tasks. Though the meta-validation

and meta-testing classes are not seen during meta-training, most of the corresponding

tasks are still assigned to the correct subspaces. The assignment for Texture is slightly

45

Table 4.5: 5-way 5-shot accuracy (with 95% confidence interval) on Meta-Dataset-BTAF.
Results marked with † are from [260].

Bird Texture Aircraft Fungi average

MAML† [51] 68.52 ± 0.73 44.56 ± 0.68 66.18 ± 0.71 51.85 ± 0.85 57.78
ProtoNet [216] 71.48 ± 0.72 50.36 ± 0.67 71.67 ± 0.69 55.68 ± 0.82 62.29

ANIL [186] 70.67 ± 0.72 44.67 ± 0.95 66.05 ± 1.07 52.89 ± 0.30 58.57
BMG [54] 71.56 ± 0.76 49.44 ± 0.73 66.83 ± 0.79 52.56 ± 0.89 60.10

DPMM [93] 72.22 ± 0.70 49.32 ± 0.68 73.55 ± 0.69 56.82 ± 0.81 63.00
TSA-MAML [285] 72.31 ± 0.71 49.50 ± 0.68 74.01 ± 0.70 56.95 ± 0.80 63.20

HSML† [259] 71.68 ± 0.73 48.08 ± 0.69 73.49 ± 0.68 56.32 ± 0.80 62.39
ARML† [260] 73.68 ± 0.70 49.67 ± 0.67 74.88 ± 0.64 57.55 ± 0.82 63.95

TSA-ProtoNet [285] 73.70 ± 0.73 50.91 ± 0.74 73.55 ± 0.78 56.11 ± 0.82 63.57
MUSML 76.79 ± 0.72 52.41 ± 0.75 77.76 ± 0.82 57.74 ± 0.81 66.18

1 2 3 4
Subspace index

Bi
rd

Te
xt

ur
e

Ai
rc

ra
ft

Fu
ng

i

Da
ta

se
t

100% 0% 0% 0%

0% 100% 0% 0%

0% 0% 100% 0%

0% 0% 0% 100%

(a) Meta-training.

1 2 3 4
Subspace index

Bi
rd

Te
xt

ur
e

Ai
rc

ra
ft

Fu
ng

i

100% 0% 0% 0%

13% 49% 13% 26%

0% 0% 100% 0%

6% 3% 3% 89%

(b) Meta-validation.

1 2 3 4
Subspace index

Bi
rd

Te
xt

ur
e

Ai
rc

ra
ft

Fu
ng

i

96% 1% 3% 0%

7% 64% 4% 24%

0% 0% 100% 0%

10% 3% 4% 83%

(c) Meta-testing.

Figure 4.3: Task assignment to the learned subspaces in 5-way 5-shot setting on Meta-
Dataset-BTAF (the number of subspaces K selected by the meta-validation set is 4).
Darker color indicates higher percentage.

worse, as the Texture and Fungi images are more similar to each other (Figure 4.2).

Table 4.6 shows the 1-shot results. MUSML, while still the best overall, has a smaller

improvement than in the 5-shot setting. This suggests that having more training samples

is beneficial for the base learner to choose a proper subspace. The assignment of tasks

to the learned subspaces is shown in Figure 4.4.

46

Table 4.6: 5-way 1-shot accuracy (with 95% confidence interval) on Meta-Dataset-BTAF.
Results marked with † are from [260].

Bird Texture Aircraft Fungi average

MAML† [51] 53.94 ± 1.45 31.66 ± 1.31 51.37 ± 1.38 42.12 ± 1.36 44.77
ProtoNet [216] 60.37 ± 1.31 40.57 ± 0.78 52.83 ± 0.93 44.10 ± 1.36 49.50

ANIL [186] 53.36 ± 1.42 31.91 ± 1.25 52.87 ± 1.34 42.30 ± 1.28 45.11
BMG [54] 54.12 ± 1.46 32.19 ± 1.21 52.09 ± 1.35 43.00 ± 1.37 45.35

DPMM [93] 61.30 ± 1.47 35.21 ± 1.35 57.88 ± 1.37 43.81 ± 1.45 49.55
TSA-MAML [285] 61.37 ± 1.42 35.41 ± 1.39 58.78 ± 1.37 44.17 ± 1.25 49.93

HSML† [259] 60.98 ± 1.50 35.01 ± 1.36 57.38 ± 1.40 44.02 ± 1.39 49.35
ARML† [260] 62.33 ± 1.47 35.65 ± 1.40 58.56 ± 1.41 44.82 ± 1.38 50.34

TSA-ProtoNet [285] 60.41 ± 1.02 40.98 ± 1.20 53.29 ± 0.89 43.91 ± 1.31 49.64
MUSML 60.52 ± 0.33 41.33 ± 1.30 54.69 ± 0.69 45.60 ± 0.43 50.53

1 2
Subspace index

Bi
rd

Te
xt

ur
e

Ai
rc

ra
ft

Fu
ng

i

Da
ta

se
t

100% 0%

100% 0%

0% 100%

0% 100%

(a) Meta-training.

1 2
Subspace index

Bi
rd

Te
xt

ur
e

Ai
rc

ra
ft

Fu
ng

i

79% 21%

64% 36%

30% 70%

40% 60%

(b) Meta-validation.

1 2
Subspace index

Bi
rd

Te
xt

ur
e

Ai
rc

ra
ft

Fu
ng

i

66% 34%

54% 46%

31% 69%

47% 53%

(c) Meta-testing.

Figure 4.4: Task assignment to the learned subspaces in 5-way 1-shot on Meta-Dataset-
BTAF (K selected by meta-validation set is 2).

4.5.3 Meta-Dataset-ABF and Meta-Dataset-CIO

Tables 4.7 and 4.8 show the results on Meta-Dataset-ABF and Meta-Dataset-CIO, respec-

tively. Here, we only consider the 5-shot setting, which is more useful for subspace

learning. As can be seen, MUSML consistently outperforms centroid-based clustering

methods (DPMM, TSA-MAML, TSA-ProtoNet) and structured meta-learning methods

(HSML, ARML). MUSML again outperforms methods with a globally-shared meta-

model (MAML, ProtoNet, ANIL, BMG), confirming the effectiveness of using a subspace

mixture. The performance of MUSML on Omniglot is slightly worse in Table 4.8. This

may be due to the fact that Omniglot is a simple dataset and a single meta-model is good

47

Table 4.7: Accuracy (with 95% confidence interval) of 5-way 5-shot classification on
Meta-Dataset-ABF. Results marked with † are from [285].

Aircraft Bird Fungi average

MAML† [51] 67.82 ± 0.65 70.55 ± 0.77 53.20 ± 0.82 63.86
ProtoNet[216] 69.74 ± 0.64 71.46 ± 0.69 55.66 ± 0.68 65.62

ANIL [186] 69.24 ± 0.87 70.34 ± 1.20 53.71 ± 0.67 64.43
BMG [54] 69.75 ± 0.72 73.04 ± 0.77 54.61 ± 0.84 65.80

DPMM [93] 70.22 ± 0.69 73.28 ± 1.33 54.28 ± 1.01 66.26
TSA-MAML† [285] 72.84 ± 0.63 74.80 ± 0.76 56.86 ± 0.67 68.17

HSML† [259] 69.89 ± 0.90 68.99 ± 1.01 53.63 ± 1.03 64.17
ARML [260] 70.20 ± 0.91 69.12 ± 1.01 54.23 ± 1.07 64.52

TSA-ProtoNet [285] 74.42 ± 0.62 75.11 ± 0.72 56.77 ± 0.69 68.77
MUSML 79.88 ± 0.61 75.63 ± 0.73 57.80 ± 0.80 71.10

Table 4.8: Accuracy (with 95% confidence interval) of 5-way 5-shot classification on
Meta-Dataset-CIO.

CIFAR-FS mini-ImageNet Omniglot average

MAML [51] 66.28 ± 1.61 60.20 ± 1.20 96.91 ± 0.39 74.46
ProtoNet [216] 71.32 ± 1.54 62.90 ± 1.07 95.32 ± 0.25 76.51

ANIL [186] 66.08 ± 0.90 60.62 ± 0.94 97.13 ± 0.13 74.61
BMG [54] 70.49 ± 1.22 63.97 ± 1.19 97.92 ± 0.42 77.46

DPMM [93] 69.84 ± 1.42 62.92 ± 1.28 97.14 ± 0.28 76.63
TSA-MAML [285] 71.11 ± 1.55 62.57 ± 1.31 96.99 ± 0.31 76.89

HSML [259] 69.24 ± 1.57 62.28 ± 1.23 95.10 ± 0.32 75.54
ARML [260] 68.88 ± 1.91 63.26 ± 1.33 96.23 ± 0.31 76.12

TSA-ProtoNet [285] 72.37 ± 1.46 63.23 ± 1.52 96.21 ± 0.33 77.27
MUSML 73.25 ± 1.42 65.12 ± 1.48 95.13 ± 0.28 77.83

enough. As shown in Figure 4.5, its meta-validation and meta-testing tasks are often

assigned to the same subspace.

4.5.4 Cross-Domain Few-Shot Classification

We examine the effectiveness of MUSML on cross-domain few-shot classification, which

is more challenging as the testing domain is unseen at meta-training. We perform

5-way 5-shot classification, where Meta-Dataset-BTAF is used for meta-training, and

Meta-Dataset-CIO for meta-testing. Table 4.9 shows the meta-testing accuracy. As can be

48

1 2 3
Subspace index

CI
FA

R-
FS

m
ini

-Im
ag

eN
et

Om
nig

lot

Da
ta

se
t

100% 0% 0%

0% 100% 0%

0% 0% 100%

(a) Meta-training.

1 2 3
Subspace index

CI
FA

R-
FS

m
ini

-Im
ag

eN
et

Om
nig

lot

80% 9% 11%

10% 76% 14%

1% 2% 97%

(b) Meta-validation.

1 2 3
Subspace index

CI
FA

R-
FS

m
ini

-Im
ag

eN
et

Om
nig

lot

87% 5% 8%

15% 71% 14%

4% 2% 94%

(c) Meta-testing.

Figure 4.5: Task assignment to the learned subspaces in 5-way 5-shot setting on Meta-
Dataset-CIO (K selected by the meta-validation set is 3). Darker color indicates higher
percentage.

Table 4.9: Accuracy of cross-domain 5-way 5-shot classification (Meta-Dataset-BTAF →
Meta-Dataset-CIO).

MAML ProtoNet ANIL BMG DPMM TSA-MAML HSML ARML TSA-ProtoNet MUSML

64.25 66.13 65.19 66.98 66.73 66.85 65.18 65.37 66.92 67.41

seen, MUSML is also effective in unseen domains.

4.5.5 Effects of K and m

In this experiment, we study the effects of K and m on the 5-shot performance of MUSML

on Meta-Dataset-BTAF. Figure 4.6(a) shows that the meta-training accuracy increases

with K. However, a large K = 5 is not advantageous at meta-validation (Figure 4.6(b))

and meta-testing (Figure 4.6(c)).

Figures 4.7(b) and 4.7(c) show that the meta-validation and meta-testing accuracies

of MUSML increase when m increases from 1 to 2, but larger m’s (m = 3, 4, 5) lead

to worse performance. This is because the obtained task model parameters (W) lie

close to the union of 2-dimensional subspaces2, and so a larger m does not improve

performance. Figure 4.8 also shows that for the 4 subspaces, the first 2 singular values

of W are dominant.

To demonstrate the theoretical results in Section 4.3, we further study the effects of K

and m on the meta-testing loss. The average training (resp. testing) loss of meta-testing

2For example, for the W solution obtained with m = 5 on Meta-Dataset-BTAF (under 5-way 5-shot
setting), approximation by a rank-2 matrix Ŵ leads to a relative error (∥W − Ŵ∥F/∥W∥F) of only 4.1%.

49

1 2 3 4 5
K

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0
M

et
a-

tra
in

in
g

ac
cu

ra
cy

 (%
)

(a) Meta-training.

1 2 3 4 5
K

56

58

60

62

64

66

M
et

a-
va

lid
at

io
n

ac
cu

ra
cy

 (%
)

(b) Meta-validation.

1 2 3 4 5
K

60

62

64

66

68

70

M
et

a-
te

st
in

g
ac

cu
ra

cy
 (%

)

(c) Meta-testing.

Figure 4.6: 5-way 5-shot classification accuracy on Meta-Dataset-BTAF with varying K
(m is fixed at 2).

1 2 3 4 5
m

76

78

80

82

84

86

88

M
et

a-
tra

in
in

g
ac

cu
ra

cy
 (%

)

(a) Meta-training.

1 2 3 4 5
m

56

58

60

62

64

66

M
et

a-
va

lid
at

io
n

ac
cu

ra
cy

 (%
)

(b) Meta-validation.

1 2 3 4 5
m

60

62

64

66

68

70

M
et

a-
te

st
in

g
ac

cu
ra

cy
 (%

)

(c) Meta-testing.

Figure 4.7: 5-way 5-shot classification accuracy on Meta-Dataset-BTAF with varying m
(K is fixed at 4).

tasks is an empirical estimate of R̂(S) (resp. R(S)), while their gap measures the

generalization performance.

Figure 4.9(a) shows that, for m ≥ 2, increasing K leads to a reduction in the training

loss. However, the testing loss does not always decrease when K increases (Figure

4.9(b)). Figure 4.9(c) shows that a large K or m may enlarge the generalization gap,

which justifies Theorem 4.3.1. As shown in Figure 4.9(c), the generalization gap is

approximately linear with K, which agrees with the relationship between the upper

bound of R(S)− R̂(S) and K in Theorem 4.3.1.

50

1 2 3 4 5
singular value index

0

2

4

6

8

10

si
ng

ul
ar

 v
al

ue

subspace 1
subspace 2
subspace 3
subspace 4

Figure 4.8: Singular values of model parameters of meta-testing tasks under the 5-way
5-shot setting on Meta-Dataset-BTAF (K = 4 and m = 5).

1 2 3 4 5
K

1.15

1.16

1.17

1.18

1.19

tra
in

in
g

lo
ss

(a) Training loss.

1 2 3 4 5
K

1.410

1.415

1.420

1.425

1.430

1.435

te
st

in
g

lo
ss

(b) Testing loss.

1 2 3 4 5
K

0.235

0.240

0.245

0.250

0.255

0.260

0.265

0.270

te
st

in
g

lo
ss

 tr

ai
ni

ng
 lo

ss

m = 1
m = 2
m = 3
m = 4
m = 5

(c) Generalization gap.

Figure 4.9: Effects of K and m on the training loss, testing loss, and generalization gap
(with 95% confidence interval) of meta-testing tasks under the 5-way 5-shot setting on
Meta-Dataset-BTAF.

Table 4.10: Accuracy of 5-way 5-shot classification on Meta-Dataset-BTAF.

γ 0.0001 0.001 0.01 0.1 1.0 2.0 MUSML

accuracy 51.22 60.12 61.15 63.16 62.11 62.02 66.18

4.5.6 Effects of Temperature Scaling Schedule

The temperature schedule used is linear annealing as in DynamicConvolution [26]

and ProbMask [286]. We conduct a 5-way 5-shot experiment on Meta-Dataset-BTAF

to evaluate MUSML with a constant temperature. Table 4.10 reports the meta-testing

accuracy. We can see that using a constant γ is inferior.

51

Table 4.11: Accuracy of 5-way 5-shot classification on meta-datasets.

Meta-Dataset-BTAF Meta-Dataset-ABF Meta-Dataset-CIO

Meta-SGD [127] 58.93 64.19 75.95
MUSML-SGD 65.72 69.15 77.48

Meta-Curvature [167] 60.02 64.51 76.13
MUSML-Curvature 66.10 69.23 77.96

4.5.7 Improving Existing Meta-Learning Approaches

As the proposed MUSML is general, a subspace mixture is also useful for other meta-

learning approaches. In this experiment, we combine MUSML with Meta-Curvature

[167] and Meta-SGD [127]. Table 4.11 reports 5-way 5-shot accuracies on meta-datasets.

As can be seen, MUSML is beneficial for both Meta-Curvature and Meta-SGD.

4.6 Conclusion

In this chapter, we formulate task model parameters into a subspace mixture and pro-

pose a model-agnostic meta-learning algorithm with subspace learning called MUSML.

For each task, the base learner builds a task model from each subspace, while the meta-

learner updates the meta-parameters by minimizing a weighted validation loss. The

generalization performance is theoretically studied. Experimental results on benchmark

datasets for classification and regression validate the effectiveness of the proposed

MUSML.

52

CHAPTER 5

Structured Prompting by Meta-Learning

Meta-learning is a general machine learning tool and has been successfully used in

various applications, such as computer vision [51, 216, 11, 175, 104, 255, 239] and

natural language processing [160, 261, 18, 72, 251, 264, 126]. This chapter introduces an

application of meta-learning to prompt tuning.

5.1 Introduction

In recent years, large pretrained language models have achieved great success in solving

a variety of downstream tasks [83, 38, 258, 32, 217, 69, 185, 16, 119, 33]. Though fine-

tuning the whole model [83, 38] is effective and widely-used, optimizing and storing

all the task-specific parameters can be computation- and memory-expensive when the

model is large (e.g., GPT-3 [16] contains 100+ billion parameters). To alleviate this issue,

many parameter-efficient finetuning approaches have been proposed. Examples include

adapter tuning [82, 131, 85] and prompt learning [183, 211, 16, 119, 139, 125, 140, 180,

136]. Prompt learning is preferable due to its effectiveness and also that it can be easily

plugged into a pretrained MLM without invasive modification [125, 71, 76, 218].

Prompt learning formulates the downstream task as a cloze-style MLM problem. It is

useful for few-shot tasks due to its effectiveness, parameter-efficiency, and plug-and-

play nature [183, 16, 136]. Specifically, prompt learning wraps an input text with a

discrete prompt (e.g., “Topic is [MASK]”) and feeds it to the MLM to predict a token

at the [MASK] position. A verbalizer [119, 40, 86] then maps the predicted token to the

label. However, designing an effective prompt requires a good understanding of the

downstream tasks.

Recently, prompt tuning [119, 139, 275] proposes to wrap the input embedding with a

continuous prompt. To reduce the number of parameters to be learned, the MLM is kept

frozen. The continuous prompt can be further combined with discrete tokens to form a

template [139, 204, 40].

53

20News Amazon HuffPost Reuters HWU64 Liu54
datasets

60

70

80

90

100

m
et

a-
te

st
in

g
ac

cu
ra

cy
MetaPrompting
MetaPrompting (w/o MLM tuning)

Figure 5.1: 5-way 5-shot classification meta-testing accuracy of MetaPrompting with or
without MLM tuning on six data sets.

Prompt tuning is sensitive to the prompt initialization [119]. Recently, a number of

approaches have been proposed to alleviate this problem [119, 122, 232]. In partic-

ular, MetaPrompting [81] is the state-of-the-art that uses meta-learning [223, 51] to

learn a meta-initialization for all task-specific prompts. However, MetaPrompting

suffers from three problems. (i) When the tasks are complex, it is challenging to ob-

tain good prompts for all tasks and samples from a single meta-initialized prompt.

(ii) MetaPrompting uses a hand-crafted verbalizer. However, selecting good label to-

kens for the hand-crafted verbalizer is labor-intensive and not scalable for a large label

set. (iii) MetaPrompting requires expensive tuning the whole MLM. Figure 5.1 shows

a large gap in meta-testing accuracies with and without MLM tuning (experimental

details are in Section 5.3).

In this chapter, we use a pool of multiple prompts [122, 240, 241] to extract task knowl-

edge from meta-training tasks, and then construct instance-dependent prompts as

weighted combinations of all the prompts in the pool via attention [230]. The atten-

tion’s query vector is the instance’s feature embedding. The prompt pool is the shared

meta-knowledge and learned by the MAML algorithm [51]. Specifically, given a task

with a support set and a query set, the base learner takes the meta-parameter and the

support set to build a task-specific prompt pool, then the meta-learner optimizes the

meta-parameter on the query set. Meta-learning a prompt pool is more flexible than

meta-learning only a single prompt initialization (as in MetaPrompting), and allows

better adaptation of complex tasks. Moreover, as only the prompt pool is tuned, it is

much more parameter-efficient than MetaPrompting (with 1000× fewer parameters).

54

We also propose a novel soft verbalizer called representative verbalizer (RepVerb), which

constructs label embeddings by averaging feature embeddings of the corresponding

training samples. Unlike manually-designed verbalizers, RepVerb does not incur human

effort for label token selection. Moreover, as RepVerb does not require learning any

additional parameters, empirical results in Section 5.3.2 demonstrate that RepVerb is

more effective than the soft verbalizers in WARP [71], DART [275], ProtoVerb [33].

Besides, the feature embedding learned by RepVerb is more discriminative.

The whole procedure, which combines meta-learning the structured prompts and

RepVerb, is called MetaPrompter in the sequel. Experiments are performed on six

widely used classification data sets. Results demonstrate that RepVerb outperforms

existing soft verbalizers, and is also beneficial to other prompt-based methods such as

MetaPrompting. Moreover, MetaPrompter achieves better performance than the recent

state-of-the-arts.

Our contributions are summarized as follows: (i) We propose a parameter-efficient

algorithm MetaPrompter for effective structured prompting. (ii) We propose a simple

and effective soft verbalizer (RepVerb). (iii) Experimental results demonstrate the

effectiveness and parameter-efficiency of MetaPrompter.

5.2 The Proposed MetaPrompter

In this section, we propose a simple and effective soft verbalizer (representative ver-

balizer) without inducing additional parameters (Section 5.2.1). Moreover, while

MetaPrompting uses a single meta-initialized prompt to build task-specific prompts,

we propose in section 5.2.2 the extraction of task knowledge into a pool of multiple

prompts, and constructs instance-dependent prompts by attention [230]. Figure 5.2

shows an overview of the proposed MetaPrompter.

5.2.1 Representative Verbalizer

Instead of explicitly learning an embedding vy for each label y [71, 33, 275], we propose

the Representative Verbalizer (RepVerb), which constructs vy from feature embeddings

of the corresponding training samples (Algorithm 5). It does not require learning

additional parameters, and is thus more effective on limited data as in few-shot learning.

55

Languange Model

Input Embedding Layer

won world cup [SEP] Topic is [MASK]Argentina [SEP]

won world cup [SEP] Topic is [MASK]Argentina [SEP]

<latexit sha1_base64="PnAQV+E8GuM12aj79V0t8KsJS+4=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0Io/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHkyXoR3QoecgZNVZqZP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03Mf6EKsOZwGmpl2pMKBvTIXYtlTRC7U/mh07JmVUGJIyVLWnIXP09MaGR1lkU2M6ImpFe9mbif143NeGNP+EySQ1KtlgUpoKYmMy+JgOukBmRWUKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rXuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kD6bWNAw==</latexit>y

…

…

<latexit sha1_base64="N9NXbDXVbpKgNbUrdtPh7QYfEdE=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KomIeix68VjBfkAby2Y7aZduNmF3opbQ/+HFgyJe/S/e/Ddu2xy09cHA470ZZuYFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsPrid98AG1ErO5wlIAfsb4SoeAMrXTfwQEg62adIKRP426p7FbcKegi8XJSJjlq3dJXpxfzNAKFXDJj2p6boJ8xjYJLGBc7qYGE8SHrQ9tSxSIwfja9ekyPrdKjYaxtKaRT9fdExiJjRlFgOyOGAzPvTcT/vHaK4aWfCZWkCIrPFoWppBjTSQS0JzRwlCNLGNfC3kr5gGnG0QZVtCF48y8vksZpxTuveLdn5epVHkeBHJIjckI8ckGq5IbUSJ1woskzeSVvzqPz4rw7H7PWJSefOSB/4Hz+AJUGkpE=</latexit>

✓x

<latexit sha1_base64="sovJTEbjjkN4eVoCBjWUNGa+d3M=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Ae0oWy2k3bpZhN2N2IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHssHM0nQj+hQ8pAzaqzUznpBSJ6m/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/m5U3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2e9kwBUyIyaWUKa4vZWwEVWUGZtQyYbgLb+8SloXVa9W9e4vK/WbPI4inMApnIMHV1CHO2hAExiM4Rle4c1JnBfn3flYtBacfOYY/sD5/AExAo96</latexit>x

Attention

<latexit sha1_base64="aB0a7H8WCzLPjXO421rHeQ+3BqQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF8FLBfsBbSib7aZdutmE3YlQQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnGScD+iQyVCwShaqZ31gpDcT/vlilt15yCrxMtJBXI0+uWv3iBmacQVMkmN6Xpugn5GNQom+bTUSw1PKBvTIe9aqmjEjZ/Nz52SM6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjtZ0IlKXLFFovCVBKMyex3MhCaM5QTSyjTwt5K2IhqytAmVLIheMsvr5LWRdWrVb2Hy0r9Jo+jCCdwCufgwRXU4Q4a0AQGY3iGV3hzEufFeXc+Fq0FJ585hj9wPn8A7JKPTQ==</latexit>

K

<latexit sha1_base64="2/cyvk0Wf+TTzb3zVeXJmgjY/TU=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48R8oJkCbOTTjJk9sFMrxCWfIQXD4p49Xu8+TdOkj1otKChqOqmuytIlDTkul9OYW19Y3OruF3a2d3bPygfHrVMnGqBTRGrWHcCblDJCJskSWEn0cjDQGE7mNzN/fYjaiPjqEHTBP2QjyI5lIKTldq9xhiJs3654lbdBdhf4uWkAjnq/fJnbxCLNMSIhOLGdD03IT/jmqRQOCv1UoMJFxM+wq6lEQ/R+Nni3Bk7s8qADWNtKyK2UH9OZDw0ZhoGtjPkNDar3lz8z+umNLzxMxklKWEklouGqWIUs/nvbCA1ClJTS7jQ0t7KxJhrLsgmVLIheKsv/yWti6p3VfUeLiu12zyOIpzAKZyDB9dQg3uoQxMETOAJXuDVSZxn5815X7YWnHzmGH7B+fgGzK+POA==</latexit>

⇥

a prompt pool
RepVerb

Figure 5.2: Overview of MetaPrompter..

Specifically, let Sτ,y be the subset of samples in Sτ with label y. For an input x, we

wrap it with the template and feed x̃ ≡ T(x; θ) to the pretrained MLM, and then obtain

[MASK]’s embedding h[MASK](x̃) as its feature embedding. Similar to ProtoNet [216], we

propose to construct vy for each y by averaging the corresponding samples’ feature

embeddings, as:

vy =
1

|Sτ,y| ∑
(x,y)∈Sτ,y

h[MASK](x̃). (5.1)

To predict the label of a given x, we measure the cosine similarity1 between h[MASK](x̃)

and each vy (y ∈ Yτ):

P̃(y|x; ϕ, θ) =
exp(ρ cos(vy, h[MASK](x̃)))

∑y′∈Yτ
exp(ρ cos(vy′ , h[MASK](x̃)))

, (5.2)

where ρ > 0 is the temperature. When ρ → ∞, P̃(y|x; ϕ, θ) becomes one-hot; whereas

when ρ → 0, P̃(y|x; ϕ, θ) becomes uniform. In the experiments, we set ρ = 10 as in

Oreshkin et al. [164].

5.2.2 Meta Structured-Prompting

In the following, we propose the use of MAML and attention mechanism [230] to meta-

learn a prompt pool. While MetaPrompting uses task-specific prompts [81], we propose

the construction of instance-specific prompts, which allows more flexibility.

1Dissimilarity measures, such as the Euclidean distance, can also be used.

56

Algorithm 5 Representative Verbalizer (RepVerb).

1: procedure COMPUTE_LABEL_EMB(Sτ):
2: compute h[MASK](x̃) for (x, ·) ∈ Sτ;
3: vy = 1

|Sτ,y| ∑(x,y)∈Sτ,y h[MASK](x̃)for y ∈ Yτ;
4: end procedure
1: procedure PRED(x; vy : y ∈ Yτ)
2: compute h[MASK](x̃) for x;

3: P̃(y|x; ϕ, θ) =
exp(ρ cos(vy,h[MASK](x̃)))

∑y′∈Yτ
exp(ρ cos(vy′ ,h[MASK](x̃)))

;

4: end procedure

Meta-Learn a Prompt Pool

While MetaPrompting uses only a single initialization for the prompt, we propose

to leverage a pool of prompts to extract more task knowledge, which is particularly

effective when the tasks are complex. A prompt pool has K learnable prompts {(ki, θi) :

i = 1, . . . , K}, with key ki ∈ Rdo and value θi ∈ RLp×di [122, 240, 241]. Note that the size

of the prompt pool is negligible compared with that of the MLM. For example, in our

experiments, the MLM has 109.52 × 106 parameters, while the prompt pool has only

55, 296.

The prompt pool can be considered as shared meta-knowledge. Given an input x, the

attention weights between x and the K prompts are computed as a = softmax(Kqx√
do
),

where K = [k⊤
1 ; . . . ; k⊤

K], and qx ∈ Rdo is the embedding of the [MASK] output by

a pretrained and frozen MLM with the wrapped input (e.g., (x. Topic is [MASK]))

[240, 241]. Such mapping from x to qx is called a query function q(·). An instance-

dependent prompt is then generated by weighted averaging over all the values (θi’s):

θx(K, Θ) =
K

∑
i=1

aiθi, (5.3)

where Θ = [θ1; . . . ; θK]. While [240, 241] only selects the top-N most similar prompts

from the pool, in (5.3) all the prompts are used and updated simultaneously.

The proposed procedure, which will be called MetaPrompter, is shown in Algorithm 6.

At iteration t, the base learner takes (Kt−1, Θt−1) and a task τ to optimize for a task-

specific prompt pool by gradient descent (steps 4-15). (Kt−1, Θt−1) is used as the

initialization (step 4). For each inner iteration j, (Kt,j−1, Θt,j−1) constructs the instance-

dependent prompts θx,j(Kt,j−1, Θt,j−1) in (5.3) (steps 7 and 8). Next, θx,j is used to

predict the label probability with a combination of the hand-crafted verbalizer (step 9)

57

Algorithm 6 MetaPrompter.

Require: prompt length Lp; size of prompt pool K; λ = 0.5; step size α, η; meta-
parameters (K, Θ); query function q(·);

1: for t = 1, . . . , T do
2: sample a task τ = (Sτ,Qτ) ∈ T ;
3: base learner:
4: (Kt,0, Θt,0) ≡ (Kt−1, Θt−1);
5: for j = 1, . . . , J do
6: for (x, y) ∈ Sτ do
7: compute qx by q(·);
8: θx,j(Kt,j−1, Θt,j−1) = softmax(Kt,j−1qx/

√
d0)

⊤Θt,j−1;
9: feed x̃ ≡ T(x; θx,j) into M, obtain h[MASK](x̃), and P̂(y|x; θx,j) by (2.16);

10: end for
11: call COMPUTE_LABEL_EMB(Sτ) of Algorithm 5 to obtain {vy : y ∈ Yτ};
12: for (x, y) ∈ Sτ, call PRED(x; vy : y ∈ Yτ) of Algorithm 5 to obtain P̃(y|x; θx,j),

and compute P(y|x; θx,j) by (5.4);
13: L(Sτ; Kt,j−1, Θt,j−1) = −∑(x,y)∈Sτ

logP(y|x;θx,j);
14: (Kt,j, Θt,j) = (Kt,j−1, Θt,j−1)− α∇(Kt,j−1,Θt,j−1)

L(Sτ; Kt,j−1, Θt,j−1);
15: end for
16: meta-learner:
17: for (x, y) ∈ Qτ do
18: compute qx by q(·);
19: θx,J(Kt,J , Θt,J) = softmax(Kt,Jqx/

√
d0)

⊤Θt,J ;
20: call PRED(x; vy : y ∈ Yτ) of Algorithm 5 to obtain P̃(y|x; θx,J);
21: compute P̂(y|x; θx,J) and P(y|x; θx,J) by (2.16) and (5.4), respectively;
22: end for
23: L(Qτ; Kt,J , Θt,J) = −∑(x,y)∈Qτ

logP(y|x; θx,J);
24: (Kt, Θt) = (Kt−1, Θt−1)− η∇(Kt,J ,Θt,J)L(Qτ; Kt,J , Θt,J);
25: end for
26: return (KT, ΘT).

and soft verbalizer (steps 11 and 12):

P(y|x; θx,j) = (1 − λ)P̂(y|x; θx,j) + λP̃(y|x; θx,j), (5.4)

where λ ∈ [0, 1]. Let L(Sτ; Kt,j−1, Θt,j−1) = −∑(x,y)∈Sτ
logP

(
y|x; θx,j

)
be the loss on

Sτ (step 13). The base learner builds a task-specific prompt pool (Kt,J ,Θt,J) by taking J

gradient updates (j = 1, . . . , J) at step 14:

(Kt,j, Θt,j) = (Kt,j−1, Θt,j−1)− α∇(Kt,j−1,Θt,j−1)
L(Sτ; Kt,j−1, Θt,j−1).

The meta-learner takes (Kt,J , Θt,J) and Qτ to update the meta-parameters (steps 17-

24). For (x, y) ∈ Qτ, we use (Kt,J , Θt,J) to generate its prompt θx,J(Kt,J , Θt,J) (steps

18 and 19), which is used for make prediction P (y|x; θx,J) (steps 20 and 21). Let

L(Qτ; Kt,J ,Θt,J) = −∑(x,y)∈Qτ
logP (y|x; θx,J) be the negative log-likelihood loss on

58

Qτ (step 23). The meta-learner updates meta-parameters by performing one gradient

update on L(Qτ; Kt,J ,Θt,J) at step 24:

(Kt, Θt) = (Kt−1, Θt−1)− η∇(Kt−1, Θt−1)L(Qτ; Kt,J , Θt,J).

The meta-gradient

∇(Kt−1,Θt−1)
L(Qτ; Kt,J , Θt,J) = ∇(Kt,J ,Θt,J)L(Qτ; Kt,J , Θt,J)∇(Kt−1,Θt−1)

(Kt,J , Θt,J)

requires back-propagating through the entire inner optimization path, which is compu-

tationally infeasible for large models and number of inner update steps J. To reduce

computation costs, we discard the second-order derivatives and use the first-order

approximation (step 24) as in [51, 81], i.e,

∇(Kt−1,Θt−1)
L(Qτ; Kt,J , Θt,J) ≈ ∇(Kt,J ,Θt,J)L(Qτ; Kt,J , Θt,J).

Meta-Testing. Given an unseen task τ′ = (Sτ′ ,Qτ′), the base learner takes Sτ′ and

(KT, ΘT) to build a task-specific prompt pool (KT,J , ΘT,J) as in steps 4-15. This pool is

then used to construct instance-dependent prompts θx,J for each (x, ·) ∈ Qτ′ . The MLM

receives the wrapped input x̃ ≡ T(x; θx,J) and predicts the label probability by (5.4).

MetaPrompter is Parameter-Efficient. As MetaPrompter only tunes (K, Θ), the total

number of meta-parameters is K(do + Lpdi) (where di and do are the dimensions of

the input and feature embeddings, respectively). This is much smaller2 than that of

MetaPrompting (which is equal to dϕ + Lpdi, where dϕ is the size of ϕ), which requires

tuning the whole MLM.

5.3 Experiments

5.3.1 Setup

Data sets. Following [18], we perform few-shot classification on six popularly used data

sets: (i) 20News [114], which contains informal discourses from news discussion forums

of 20 topics; (ii) Amazon [74] consists of customer reviews from 24 products. The task

is to classify reviews into product categories; (iii) HuffPost [152], which contains news

headlines of 41 topics published in the HuffPost between 2012 and 2018. These headlines

are shorter and less grammatical than formal sentences, thus are more challenging for

2For example, do = di = 768, dϕ = 109× 106 in BERT. Moreover, Both K and Lp are 8 in the experiments.

59

Table 5.1: Statistics of the data sets.

#classes #samples #tokens per sample
(meta-train/valid/test) (mean ± std)

20News 8/5/7 18, 820 340 ± 151
Amazon 10/5/9 24, 000 140 ± 32
HuffPost 20/5/16 36, 900 11 ± 4
Reuters 15/5/11 620 168 ± 136
HWU64 23/16/25 11, 036 7 ± 3

Liu54 18/18/18 25, 478 8 ± 4

classification; (iv) Reuters [120] is a collection of Reuters newswire articles of 31 topics

from 1996 to 1997; (v) HWU64 [141] is an intent classification data set, containing user

utterances of 64 intents; (vi) Liu54 [141] is an imbalanced intent classification data set

of 54 classes collected on Amazon Mechanical Turk. We use the meta-training/meta-

validation/meta-testing splits provided in [18]. A summary of data sets is in Table

5.1.

Following [9, 72, 18, 81], we perform experiments in the 5-way 1-shot and 5-way 5-shot

settings with 15 query samples per class. The pretrained BERT (bert-base-uncased) from

HuggingFaces [248] is used as the pretrained MLM as [18, 81]. Experiments are run on

a DGX station with 8 V100 32GB GPUs. The experiment is repeated three times with

different random seeds.

5.3.2 Evaluation on RepVerb

First, we compare the performance of the proposed RepVerb with the state-of-the-art

soft verbalizers of: (i) WARP [71]3, and (ii) ProtoVerb [33]. As the focus is on evaluating

verbalizers, all methods use the same discrete prompt “Topic is [MASK]”, and finetune

all parameters for 5 steps with a learning rate of 0.00005 as in [33].

Results. Table 5.2 reports the meta-testing accuracies. As can be seen, RepVerb outper-

forms WARP and ProtoVerb on both the 1-shot and 5-shot settings.

For a 5-way 5-shot task randomly from Reuters, Figure 5.3 shows the t-SNE visualization

of the embeddings (h[MASK](x)’s) of 100 samples (x’s)4 and learned label embeddings

3Note that the verbalizer of WARP is the same as that of DART [275].
45-way × (5 support samples + 15 query samples) = 100.

60

Table 5.2: Meta-testing accuracy of 5-way few-shot classification.

20News Amazon HuffPost Reuters HWU64 Liu54

5-shot
WARP [71] 61.43 ± 0.15 59.53 ± 0.20 46.31 ± 0.31 68.67 ± 0.71 68.60 ± 0.40 73.11 ± 0.26

ProtoVerb [33] 71.33 ± 0.11 71.74 ± 0.21 57.93 ± 0.17 80.93 ± 0.54 73.43 ± 0.51 76.19 ± 0.33
RepVerb 78.81 ± 0.08 77.56 ± 0.16 61.90 ± 0.08 88.33 ± 0.40 78.37 ± 0.49 82.14 ± 0.23

1-shot
WARP [71] 49.87 ± 0.63 48.94 ± 0.34 38.21 ± 0.35 52.88 ± 0.67 53.20 ± 0.76 58.68 ± 0.64

ProtoVerb [33] 54.13 ± 0.46 55.07 ± 0.27 41.40 ± 0.21 57.27 ± 0.73 55.17 ± 0.81 60.16 ± 0.37
RepVerb 59.86 ± 0.38 59.18 ± 0.31 44.65 ± 0.20 63.63 ± 0.41 59.83 ± 0.71 66.17 ± 0.40

(a) WARP. (b) ProtoVerb. (c) RepVerb.

Figure 5.3: t-SNE visualization of [MASK]’s embeddings (crosses) and label embeddings
(circles) for a 5-way 5-shot task randomly sampled from Reuters.

(vy’s). As can be seen, the RepVerb embedding is more discriminative and compact than

WARP and ProtoVerb. Moreover, by design, RepVerb’s label embedding is consistent

with the samples’ feature embeddings, while those of WARP and ProtoVerb are not.

5.3.3 Evaluation on MetaPrompter

Setup. For MetaPrompter, hyperparameters K and Lp are chosen from {1, 2, 4, 8, 16, 32, 64}
using the meta-validation set. For the base learner, α = 0.1, and J = 5 (resp. 15) at meta-

training (resp. meta-validation or meta-testing). We train the prompt pool for T = 3, 000

iterations using the Adam optimizer [108] with a learning rate of 0.001. To prevent over-

fitting, we evaluate the meta-validation performance every 100 iterations and choose

the checkpoint with the best meta-validation performance for meta-testing. For the hard

verbalizer, label tokens are obtained by tokenizing the class name and its synonyms

as in [81, 86]. Following [119], prompts are initialized from the input embeddings of

randomly sampled label tokens for both MetaPrompting and MetaPrompter.

Baselines. We compare with a variety of methods, including state-of-the-art prompt-

based methods of (i) MetaPrompting [81], and its variants (ii) MetaPrompting+WARP /

61

Table 5.3: 5-way 5-shot classification meta-testing accuracy. Results marked with † are
from [18]. “–” indicates that the corresponding result is not reported in [18].

#param (×106) 20News Amazon HuffPost Reuters HWU64 Liu54

HATT† [59] 0.07 55.00 66.00 56.30 56.20 - -
DS† [9] 1.73 68.30 81.10 63.50 96.00 - -

MLADA† [72] 0.73 77.80 86.00 64.90 96.70 - -
ConstrastNet† [18] 109.52 71.74 85.17 65.32 95.33 92.57 93.72

MetaPrompting [81] 109.52 85.67 ± 0.44 84.19 ± 0.30 72.85 ± 1.01 95.89 ± 0.23 93.86 ± 0.97 94.01 ± 0.26
MetaPrompting+WARP 109.52 85.81 ± 0.48 85.54 ± 0.20 71.71 ± 0.72 97.28 ± 0.30 93.99 ± 0.76 94.33 ± 0.27

MetaPrompting+ProtoVerb 109.52 86.18 ± 0.51 84.91 ± 0.38 73.11 ± 0.80 97.24 ± 0.25 93.81 ± 0.81 94.38 ± 0.18
MetaPrompting+RepVerb 109.52 86.89 ± 0.39 85.98 ± 0.28 74.62 ± 0.88 97.32 ± 0.31 94.23 ± 0.67 94.45 ± 0.33

MetaPrompter 0.06 88.57 ± 0.38 86.36 ± 0.24 74.89 ± 0.75 97.63 ± 0.22 95.30 ± 0.51 95.47 ± 0.21

Table 5.4: 5-way 1-shot classification meta-testing accuracy. Results marked with † are
from [18]. “–” indicates that the corresponding result is not reported in [18].

#param (×106) 20News Amazon HuffPost Reuters HWU64 Liu54

HATT† [59] 0.07 44.20 49.10 41.10 43.20 - -
DS† [9] 1.73 52.10 62.60 43.00 81.80 - -

MLADA† [72] 0.73 59.60 68.40 64.90 82.30 - -
ConstrastNet† [18] 109.52 71.74 76.13 53.06 86.42 86.56 85.89

MetaPrompting [81] 109.52 82.46 ± 0.50 76.92 ± 0.77 68.62 ± 0.56 92.56 ± 0.77 91.06 ± 0.41 87.79 ± 0.29
MetaPrompting +WARP 109.52 82.93 ± 0.39 78.27 ± 0.72 67.78 ± 0.41 94.74 ± 0.56 91.30 ± 0.35 88.69 ± 0.26

MetaPrompting+ProtoVerb 109.52 83.15 ± 0.41 78.19 ± 0.65 68.96 ± 0.52 95.26 ± 0.40 91.27 ± 0.63 90.05 ± 0.15
MetaPrompting+RepVerb 109.52 84.13 ± 0.30 78.59 ± 0.43 69.02 ± 0.51 95.78 ± 0.33 91.32 ± 0.44 90.13 ± 0.20

MetaPrompter 0.06 84.62 ± 0.29 79.05 ± 0.21 67.12 ± 0.23 96.34 ± 0.20 92.11 ± 0.30 93.72 ± 0.18

MetaPrompting+ProtoVerb / MetaPrompting+RepVerb, which combine meta-prompt-

ing with the soft verbalizer of WARP / ProtoVerb / RepVerb, respectively. More-

over, we also compare with the non-prompt-based methods of: (iii) HATT [59], which

meta-learns a prototypical network [216] with a hybrid attention mechanism; (iv) DS [9],

which learns attention scores based on word frequency; (v) MLADA [72], which uses

an adversarial domain adaptation network to extract domain-invariant features dur-

ing meta-training; and (vi) ConstrastNet [18], which performs feature extraction by

contrastive learning.

Results. Table 5.3 shows the number of parameters and meta-testing accuracy in the

5-shot setting. As can be seen, MetaPrompter is more accurate than both prompt-based

and non-prompt-based baselines. Moreover, since MetaPrompter only tunes the prompt

pool and keeps the language model frozen, it has much fewer meta-parameters than

MetaPrompting and ConstrastNet.

Furthermore, MetaPrompting+RepVerb performs better than MetaPrompting+WARP

and MetaPrompting+ProtoVerb, demonstrating that the proposed RepVerb is beneficial

to MetaPrompting.

Table 5.4 shows the number of parameters and meta-testing accuracy in 5-way 1-shot

62

setting. As can be seen, the state-of-the-art prompt-based methods always achieve

higher accuracy than the non-prompt-based. Furthermore, MetaPrompter performs the

best on 5 of the 6 data sets. Besides, RepVerb is again useful to MetaPrompting on all

six data sets.

5.3.4 Visualization

In this section, we visualize the meta-knowledge in the prompt pool learned from the

5-way 5-shot classification task on Reuters. Table 5.5 shows the nearest tokens to each of

Table 5.5: Nearest tokens to the learned prompts for Reuters.

prompt id nearest tokens

1 copper, steel, trading, gas, fx, aluminum, earn, coffee
2 gross, ship, index, money, gold, tin, iron, retail
3 product, cpi, industrial, acquisitions, jobs, supplying, orange, sugar
4 cocoa, production, grain, livestock, wholesale, cotton, bop, crude
5 oil, national, rubber, nat, interest, price, reserves, regional
6 nat, wholesale, sugar, golden, reserves, drinks, production, product
7 chocolate, sugar, cheat, orange, trade, fx, cash, acquiring
8 aluminum, livestock, cpc, tin, shops, wheat, petrol, supply

1 2 3 4 5 6 7 8
Prompt

cocoa
coffee

copper
cotton

cpi
crude
earn
gnp
gold

grain
interest

ipi
acq

alum
bop

To
pi

c

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.4: Distribution of attention weights on 5-way 5-shot classification of Reuters (15
topics).

63

 1
,1

 1
,2

 1
,3

 1
,4

 1
,5

 1
,6

 1
,7

 1
,8

 2
,1

 2
,2

 2
,3

 2
,4

 2
,5

 2
,6

 2
,7

 2
,8

 3
,1

 3
,2

 3
,3

 3
,4

 3
,5

 3
,6

 3
,7

 3
,8

 4
,1

 4
,2

 4
,3

 4
,4

 4
,5

 4
,6

 4
,7

 4
,8

 5
,1

 5
,2

 5
,3

 5
,4

 5
,5

 5
,6

 5
,7

 5
,8

 6
,1

 6
,2

 6
,3

 6
,4

 6
,5

 6
,6

 6
,7

 6
,8

 7
,1

 7
,2

 7
,3

 7
,4

 7
,5

 7
,6

 7
,7

 7
,8

 8
,1

 8
,2

 8
,3

 8
,4

 8
,5

 8
,6

 8
,7

 8
,8

prompt tokens (j)
i

cocoa
coffee

copper
cotton

cpi
crude
earn
gnp
gold

grain
interest

ipi
acq

alum
bop

To
pi

c

0.2

0.0

0.2

0.4

0.6

0.8

Figure 5.5: Cosine similarities between learned prompt tokens and topic embeddings
on 5-way 5-shot classification of Reuters. In the x-axis, (i, j) stands for the jth row of θi

(i.e., θ
(j)
i)

the K (= 8) learned prompts. Figure 5.4 shows the average attention weights between

the K prompts and meta-training samples belonging to class (topic) y:

1
|Ty| ∑

τ∈Ty

1
|Sτ,y| ∑

(x,y)∈Sτ,y

softmax
(

KT,Jqx√
do

)
,

where Ty is the subset of tasks in T having class y. As can be seen, samples from each

target class prefer prompts whose tokens are related to that class. For example, samples

from the topic cocoa tend to use the 4th and 7th prompts (whose tokens are close to

words like cocoa, chocolate as can be seen from Table 5.5), while samples from the topic

coffee tend to use the 1st and 6th prompts (whose tokens are close to words like coffee

and sugar.

Recall that the prompt pool has K learnable prompts {(ki, θi) : i = 1, . . . , K}, with key

ki ∈ Rdo and value θi ∈ RLp×di . Let θ
(j)
i be the jth row of θi. Moreover, let 1

|Vy| ∑w∈Vy E(w)
be the embedding of topic (class) y, where Vy is a set of tokens relevant to label y

(obtained from Hou et al. [81]), and E(·) is the input embedding. Figure 5.5 shows the

cosine similarities between the learned prompt tokens {θ
(j)
i : i = 1, . . . , K, j = 1 . . . , Lp}

and topic embeddings. As can be seen, embedding of cocoa is close to θ
(1)
4 and θ

(1)
7 . Thus,

samples from cocoa prefer the 4th and 7th prompts (Figure 5.4). Similarly, embedding of

coffee is close to θ
(8)
1 and θ

(6)
6 . Thus, samples from coffee prefer the 1st and 6th prompts

(Figure 5.4).

64

5.4 Conclusion

In this chapter, we propose MetaPrompter, an effective and parameter-efficient algo-

rithm for prompt tuning. It combines structured prompting and a novel verbalizer called

RepVerb. A prompt pool structure is used to construct instance-dependent prompts

by attention, while RepVerb builds label embedding by averaging feature embeddings

of the corresponding training samples. The pool of prompts is meta-learned from the

meta-training tasks. Experimental results demonstrate the effectiveness of the proposed

MetaPrompter and RepVerb.

65

CHAPTER 6

Forward-Backward Reasoning in LLMs for

Mathematical Verification

6.1 Introduction

Pretrained large language models (LLMs) [29, 163, 249] generalize well on unseen tasks

by few-shot prompting (or in-context learning (ICL) [16, 150, 25]. This is performed

by concatenating a few examples (e.g., question-answer pairs) as a prompt, and then

appending the testing question. However, it is still challenging for LLMs to answer

mathematical questions by simply prompting the question-answer pairs, as mathematics

is more complex and often requires many steps to derive the answer.

One promising direction is using the meta-knowledge of forward reasoning extracted from

pretraining tasks, i.e., start with the question, then generate several reasoning steps

before giving the answer. Recently, Wei et al. [243] propose chain-of-thought (CoT)

prompting for LLMs, which generates explicit intermediate steps that are used to reach

the answer. Specifically, each in-context example is augmented with several thinking

steps described in natural language. A few examples are concatenated as a CoT prompt.

In inference, the testing question is appended to the prompt and then fed to an LLM. The

LLM is expected to imitate the in-context examples, i.e., generating several reasoning

steps before giving the answer. CoT prompting has achieved promising performance on

mathematical reasoning tasks [243, 237, 281, 279], and many works have been proposed

to improve its effectiveness [57, 281, 283, 262, 177] and efficiency [279, 109, 39, 144].

Self-Consistency [237] is a simple but effective approach to improve CoT prompting.

Using temperature sampling [1, 50], it samples a diverse set of reasoning chains which

may lead to multiple candidate answers. The one that receives the most votes is then

chosen as the final answer. Self-Consistency is based on the forward reasoning meta-

knowledge of LLMs, i.e., starts with the origin question and generates the reasoning

chains with the answer. Figure 6.6 in Section 6.4.1 shows the testing accuracy (averaged

over six data sets) of Self-Consistency with different numbers. As shown, simply

sampling more reasoning paths may not lead to performance improvement, particularly

66

when MF is large. Moreover, among the failure questions of Self-Consistency, about

60% have at least one reasoning chain that reaches the correct answer (Table 6.4 in

Section 6.4.1). Hence, the majority voting of Self-Consistency can be improved using a

more reliable verifier.

In this chapter, we use the meta-knowledge of backward reasoning (or backward chaining) to

verify candidate answers [176, 200, 107, 128, 266]. Backward reasoning works backward

from a candidate answer to the antecedent for checking if any data supports this answer.

To active backward reasoning meta-knowledge for verification, we mask an informative

word in the question and ask the LLM to predict the masked word when a candidate

answer Âc is provided. We focus on mathematical reasoning tasks, where numbers are

the informative words being masked. For each candidate Âc, we mask a number in

the question by x and design a template “If we know the answer to the above question is

Âc, what is the value of unknown variable x?” to form a backward question, which is then

fed to the LLM to sample multiple backward reasoning chains to predict the masked

number. Then, by defining the vote of Âc as the number of chains that predict the

masked number exactly, we estimate the backward probability PB(Âc) as the proportion

of votes Âc gets in the backward direction. When using backward reasoning alone, the

prediction is argmaxÂc
PB(Âc).

As the meta-knowledge of forward and backward reasoning are complementary, we

propose a FOrward-BAckward Reasoning (FOBAR) method to combine them. By

estimating the forward probability PF(Âc) as the proportion of votes Âc gets in the forward

direction, we propose to estimate the probability that Âc is correct (denoted P(Âc)) as the

geometric mean of forward and backward probabilities, i.e., P(Âc) ∝
√
PF(Âc)PB(Âc).

Extensive experiments on six data sets and three OpenAI’s LLMs (i.e., text-davinci-

003 [161], GPT-3.5-Turbo [162], and GPT-4 [163]) show that FOBAR achieves state-of-the-

art (SOTA) performance.

Our contributions are summarized as follows. (i) We use the meta-knowledge of back-

ward reasoning for mathematical verification by masking a number in the original

question and asking the LLM to predict the masked number when a candidate answer

is provided. (ii) We propose FOBAR to combine forward and backward reasoning

meta-knowledge for verification. (iii) Experimental results on six standard mathemat-

ical benchmarks and three LLMs show that FOBAR achieves SOTA performance. In

particular, FOBAR outperforms Self-Consistency which uses forward reasoning alone,

67

demonstrating that combining forward and backward reasoning together is better.

Additionally, FOBAR outperforms Self-Verification, confirming that using the simple

template and the proposed combination is more effective. (iv) Empirical results on

two non-mathematical reasoning tasks show that FOBAR also performs well.

6.2 Forward-Backward Reasoning for Verification

In this section, we propose the FOBAR method for verification. An overview of FOBAR

is shown in Figure 6.1. We first consider mathematical reasoning tasks. A set of candi-

date answers are generated in the forward direction, and we estimate each answer’s

probability based on the votes it receives (Section 6.2.1). Next, we mask a number in

the question and propose a simple template to create backward questions for verifying

candidate answers (Section 6.2.2). We further propose FOBAR (Section 6.2.3) to combine

forward and backward reasoning. Extension to non-mathematical tasks is discussed in

Section 6.2.4.

6.2.1 Forward Reasoning

Forward reasoning starts with a question and generates multiple intermediate steps

toward the answer. Specifically, for a question Q, we prepend it with a base prompt PF

(e.g., CoT prompting [243] or ComplexCoT prompting [57]) and feed the tuple (PF, Q)

to the LLM for generating a reasoning chain and candidate answer. Using temperature

sampling [1, 50], we sample MF candidate reasoning chains {Ri}MF
i=1 and extract the

corresponding candidate answers {Ai}MF
i=1 (see Figure 6.1, top). Let A = {Âc}|A|

c=1 be

the set of answers deduplicated from {Ai}MF
i=1. Unlike greedy decoding [243], we may

have several different candidate answers (i.e., |A| > 1). We propose to estimate the

probability that candidate Âc ∈ A is correct as the proportion of votes it receives from

the reasoning paths:

PF(Âc) =
1

MF

MF

∑
i=1

I(Ai = Âc), (6.1)

where I(·) is the indicator function. Choosing Âc with the largest PF(Âc) corresponds to

the state-of-the-art method of Self-Consistency [237]. However, as shown in Figure 6.6,

the performance of Self-Consistency saturates when MF is sufficiently large. Thus,

simply sampling more reasoning paths brings negligible performance improvement.

68

A: Jim spends 2 hours
watching TV … spend
4*9=36 hours on TV and
reading. The answer is 36.

A: Jim spends 2 hours
watching TV and reads for
half ... The answer is 12.

…

Q: Jim spends 2 hours watching TV and
then decides to go to bed and reads for
half as long. He does this 3 times a
week. How many hours does he spend
on TV and reading in 4 weeks?
(answer: 36)

Forward Reasoning

FOBAR: FOrward-BAckward Reasoning

A: Jim spends 2 hours … The
value of x is 3.

A: Jim watches 2 hours TV,
then ... The value of x is 3.

…

Q: Jim spends 2 hours watching TV and
then decides to go to bed and reads for
half as long. He does this x times a
week. How many hours does he spend
on TV and reading in 4 weeks? If we
know the answer of the above question is
36, what is the value of unknown
variable x?

A: Jim spends 2 hours …
The value of x is 4.

A: Jim watches 2 hours
TV ... The value of x is 3.

Q: Jim spends 2 hours watching TV and
then decides to go to bed and reads for
half as long. He does this x times a
week. How many hours does he spend
on TV and reading in 4 weeks? If we
know the answer of the above question is
12, what is the value of unknown variable
x?

…

Backward Reasoning

<latexit sha1_base64="IKKk5zxoWtq+pWujYEec6bL/15I=">AAACGnicbVDLSgMxFM34rPU16tJNsAiuykREXViouHFZwT6gMw6ZNNOGZh4kGaFM5zvc+CtuXCjiTtz4N2baWdTWA4HDOeeSe48XcyaVZf0YS8srq2vrpY3y5tb2zq65t9+SUSIIbZKIR6LjYUk5C2lTMcVpJxYUBx6nbW94k/vtRyoki8J7NYqpE+B+yHxGsNKSayI7wGpAME+vM1iDdmoPsNLcJXbmpqSGsod0PJMZZ65ZsarWBHCRoIJUQIGGa37ZvYgkAQ0V4VjKLrJi5aRYKEY4zcp2ImmMyRD3aVfTEAdUOunktAwea6UH/UjoFyo4UWcnUhxIOQo8ncyXlPNeLv7ndRPlXzopC+NE0ZBMP/ITDlUE855gjwlKFB9pgolgeldIBlhgonSbZV0Cmj95kbROq+i8iu7OKvWroo4SOARH4AQgcAHq4BY0QBMQ8ARewBt4N56NV+PD+JxGl4xi5gD8gfH9C0s8oao=</latexit>

A = {Âc}|A|
c=1candidate answers

<latexit sha1_base64="1H6PwoGPyB9xkOUHmcJ6ftBW9iQ=">AAACDXicbVC7SgNBFJ2NrxhfUUubwSjEJuyKqIVFQBAbIYJ5QLKE2clsMmR2dpm5K4YlP2Djr9hYKGJrb+ffOJtsoYkHBg7n3MPce7xIcA22/W3lFhaXllfyq4W19Y3NreL2TkOHsaKsTkMRqpZHNBNcsjpwEKwVKUYCT7CmN7xM/eY9U5qH8g5GEXMD0pfc55SAkbrFg/JNtwPsAZKrMZ4SbPI6lFz2cURgoMdH3WLJrtgT4HniZKSEMtS6xa9OL6RxwCRQQbRuO3YEbkIUcCrYuNCJNYsIHZI+axsqScC0m0yuGeNDo/SwHyrzJOCJ+juRkEDrUeCZySDdb9ZLxf+8dgz+uZtwGcXAJJ1+5McCQ4jTanCPK0ZBjAwhVHGzK6YDoggFU2DBlODMnjxPGscV57Ti3J6UqhdZHXm0h/ZRGTnoDFXRNaqhOqLoET2jV/RmPVkv1rv1MR3NWVlmF/2B9fkDeOCbzg==</latexit>

(MF reasoning paths)

<latexit sha1_base64="DKhRV0kkhzNP0ctUM5zftbmzZjo=">AAACJHicbZC5TsNAEIbX3IQrQEmzIkKiimyEOEQDoqEMEgmIOLLWmwlZsV6b3XEgMn4YGl6FhoJDFDQ8C+uQguuXVvr1z4xm5wsTKQy67rszMjo2PjE5NV2amZ2bXygvLjVMnGoOdR7LWJ+FzIAUCuooUMJZooFFoYTT8PKwqJ/2QBsRqxPsJ9CK2IUSHcEZ2igo750HnPpwlYoe9St+5iPcYMZjrYEjDRm/vGa6TXmXCWVyekv9LsPsIA+4nwflilt1B6J/jTc0FTJULSi/+O2YpxEo5JIZ0/TcBFsZ0yi4hLzkpwYSu5JdQNNaxSIwrWxwZE7XbNKmnVjbp5AO0u8TGYuM6Ueh7YwYds3vWhH+V2um2NlpZUIlKYLiX4s6qaQY04IYbYuChexbw7gW9q8FDs04Wq4lC8H7ffJf09ioeltV73izsr87xDFFVsgqWSce2Sb75IjUSJ1wckceyBN5du6dR+fVeftqHXGGM8vkh5yPT4PKpVc=</latexit>

Zc ⌘ #{correct backward chains|Âc}
<latexit sha1_base64="0zySUTcoRJrvF1EqwXi28UjMFYw=">AAAB+XicbVBNSwMxEJ31s9avVY9egkXwYtkV0XoQCl48VrAf0K4lm2bb0GyyJNlCWfpPvHhQxKv/xJv/xrTdg7Y+GHi8N8PMvDDhTBvP+3ZWVtfWNzYLW8Xtnd29fffgsKFlqgitE8mlaoVYU84ErRtmOG0liuI45LQZDu+mfnNElWZSPJpxQoMY9wWLGMHGSl3X7dBEMy7Fre89ZeeVSdcteWVvBrRM/JyUIEet6351epKkMRWGcKx12/cSE2RYGUY4nRQ7qaYJJkPcp21LBY6pDrLZ5RN0apUeiqSyJQyaqb8nMhxrPY5D2xljM9CL3lT8z2unJqoEGRNJaqgg80VRypGRaBoD6jFFieFjSzBRzN6KyAArTIwNq2hD8BdfXiaNi7J/VfYfLkvVmzyOAhzDCZyBD9dQhXuoQR0IjOAZXuHNyZwX5935mLeuOPnMEfyB8/kDnMuS9w==</latexit>

✏ = 10�8

<latexit sha1_base64="MjazRm3XyIMsI1jS7ONyCjOZrlw=">AAACSXicbVBJSyNBGK1OXOOWGY9eCoMQL6FbxOUQiAzIeBAiGBXSsa2uVJvC6oWqr4cJRf29uXjz5n+YiwdFPFmJjfuDgsf73rfUCzPBFbjurVMqT0xOTc/MVubmFxaXqj9+nqg0l5R1aCpSeRYSxQRPWAc4CHaWSUbiULDT8OrXqH76h0nF0+QYhhnrxeQy4RGnBKwUVC/8mMAgDHXbBD6wv6D3Td0fENB7JqDruIn9SBKqPaMPXw0G+yqPA82bnjm3+r4VijEHpr4X8ObbhKBacxvuGPgr8QpSQwXaQfXG76c0j1kCVBClup6bQU8TCZwKZip+rlhG6BW5ZF1LExIz1dPjJAxes0ofR6m0LwE8Vt93aBIrNYxD6xwdrD7XRuJ3tW4O0U5P8yTLgSX0ZVGUCwwpHsWK+1wyCmJoCaGS21sxHRCbHNjwKzYE7/OXv5KTjYa31fCONmut3SKOGbSCVlEdeWgbtdBv1EYdRNE/9B/dowfn2rlzHp2nF2vJKXqW0QeUys/I67Nc</latexit>

PF(Âc) =
1

MF

MFX

i=1

I(Ai = Âc)

<latexit sha1_base64="4ArLwKlvBW4ze+RdwkuBZFg0gFY=">AAACXnicbVHRThQxFO2MiriArPJiwktxQ8SYbGaMUXggQXnhcU1cIGzXSeduh23odCbtHcKm9Cd5M774KXaWTRDwJk1Ozjn39vY0r5W0mCS/ovjJ02dLz5dfdFZW116ud1+9PrZVY0AMoVKVOc25FUpqMUSJSpzWRvAyV+Ikvzhs9ZNLYays9A+c1WJc8nMtCwkcA5V1G1ZynOa5G/iMobhC983vsClH99Vn8J6yrX22RVlhOLizDOgHykRtpaq0d8w2Zebg3X7qf7rr+SDgKjRe+7OW93dmel/Our2kn8yLPgbpAvTIogZZ94ZNKmhKoREUt3aUJjWOHTcoQQnfYY0VNYcLfi5GAWpeCjt283g83Q7MhBaVCUcjnbP/djheWjsr8+Bsl7QPtZb8nzZqsNgdO6nrBoWG24uKRlGsaJs1nUgjANUsAA5Ghl0pTHmIEsOPdEII6cMnPwbHH/vp5376/VPvYG8RxzLZJG/JDknJF3JAjsiADAmQ31EUdaKV6E+8FK/F67fWOFr0bJB7Fb/5C1EItk4=</latexit>

PB(Âc)=
Zc + ✏

P|A|
c0=1 Zc0 + ✏|A|

<latexit sha1_base64="m+Eg0/4sAHHREXvNvENpL7R9AfU=">AAACXHicbVFNSwMxFMyuX7V+VQUvXoJFqAfLroh68OAHiMcKVoVuXd6mqQ3N7obkrViW/ZPevPhXNK0LanUgMMzMI3mTSElh0PPeHHdmdm5+obJYXVpeWV2rrW/cmTTTjLdZKlP9EIHhUiS8jQIlf1CaQxxJfh8NL8f+/TPXRqTJLY4U78bwlIi+YIBWCmsmiAEHUZS3ikYwAMzPi5Dt0UDpVGFKG992GCB/wfzqZ27vMQ9AqgEU/yQvppL+fpkNa3Wv6U1A/xK/JHVSohXWXoNeyrKYJ8gkGNPxPYXdHDQKJnlRDTLDFbAhPPGOpQnE3HTzSTkF3bVKj/ZTbU+CdKL+nMghNmYURzY53sBMe2PxP6+TYf+km4tEZcgT9nVRP5PU1jZumvaE5gzlyBJgWti3UjYADQztf1RtCf70yn/J3UHTP2r6N4f1s9OyjgrZJjukQXxyTM7INWmRNmHkjXw4FWfReXdn3SV35SvqOuXMJvkFd+sTtm62XA==</latexit>

P(Âc) / (PF(Âc))
↵(PB(Âc))

1�↵

Figure 6.1: Overview of forward/backward reasoning and the proposed FOBAR. The
detailed procedure is shown in Algorithm 7.

6.2.2 Backward Reasoning

In backward reasoning, we mask a number contained in the question and ask the LLM

to predict the masked number by using a provided candidate answer. Specifically,

suppose that question Q involves NQ numbers {num(n)}NQ
n=1. We replace each of them

one by one with x. The resultant masked question Q̂(n) is then concatenated with the

following template, which contains a candidate answer Âc ∈ A.

Template For Creating Backward Question

T (Âc) = If we know the answer to the above question is {Âc}, what is the value of unknown
variable x?

Each (Q̂(n), T (Âc)) pair is called a backward question. In total, we obtain NQ backward

questions. Some examples of backward questions are shown in Example 6.2.1. Note that

69

Self-Verification [246] needs the assistance of an LLM to rewrite a (question, answer)

pair into a declarative statement.1 In contrast, the proposed template is simpler and

avoids possible mistakes (an example illustrating Self-Verification’s rewriting mistakes

is shown in Example 6.2.2).

Example 6.2.1: Backward questions.

Question: Jim spends x hours watching TV and then decides to go to bed and reads
for half as long. He does this 3 times a week. How many hours does he spend on TV
and reading in 4 weeks? If we know the answer to the above question is {Âc}, what is the
value of unknown variable x?
Question: Jim spends 2 hours watching TV and then decides to go to bed and reads
for half as long. He does this x times a week. How many hours does he spend on TV
and reading in 4 weeks? If we know the answer to the above question is {Âc}, what is the
value of unknown variable x?
Question: Jim spends 2 hours watching TV and then decides to go to bed and reads
for half as long. He does this 3 times a week. How many hours does he spend on TV
and reading in x weeks? If we know the answer to the above question is {Âc}, what is the
value of unknown variable x?

Example 6.2.2: Mistake in Self-Verification

Question: A class of 50 students has various hobbies. 10 like to bake, 5 like to play
basketball, and the rest like to either play video games or play music. How many like
to play video games if the number that like to play music is twice the number that
prefer playing basketball? (answer: 25)
Question (Self-Verification): A class of x students has various hobbies. 10 like to
bake, 5 like to play basketball, and the rest like to either play video games or play
music. The number of people who like to play video games is equal to the number of
people who prefer playing basketball multiplied by two. The number of people who
like to play video games is 25. What is the answer of x?
Question (FOBAR): A class of x students has various hobbies. 10 like to bake, 5 like to
play basketball, and the rest like to either play video games or play music. How many
like to play video games if the number that like to play music is twice the number
that prefer playing basketball? If we know the answer to the above question is 25, what is
the value of unknown variable x?

To predict the masked number, we prepend the backward question with a prompt PB,

which consists of several (backward) question-answer demos with reasoning chains.

An example question-answer demo is shown in Example 6.2.3. We feed each of

(PB, Q̂(n), T (Âc)) (where n = 1, . . . , NQ) to the LLM, which then imitates the in-context

examples in PB and generates a reasoning chain for the prediction of the masked num-

ber. We sample MB such reasoning chains with predictions {n̂um(n)
c,b }

MB
b=1 (see Figure 6.1,

1For example, “How many hours does he spend on TV and reading in 4 weeks?” with a candidate
answer of 36 is rewritten to “He spends 36 hours on TV and reading in 4 weeks”.

70

middle). For each candidate answer Âc, we count the number of times that the masked

number is exactly predicted:

Zc =
NQ

∑
n=1

MB

∑
b=1

I(n̂um(n)
c,b = num(n)). (6.2)

The probability that candidate answer Âc is correct is estimated as

PB(Âc) =
Zc + ϵ

∑|A|
c′=1 Zc′ + ϵ|A|

, (6.3)

where ϵ = 10−8 is a small positive constant to avoid division by zero. One can simply

choose Âc with the largest PB(Âc) as the prediction. A more effective method, as will

be shown in Section 6.2.3, is to combine the probabilities obtained from forward and

backward reasoning.

Example 6.2.3: Backward Reasoning.

Question: Randy has 60 mango trees on his farm. He also has x less than half as many
coconut trees as mango trees. How many trees does Randy have in all on his farm? If
we know the answer to the above question is 85, what is the value of unknown variable x?
Answer: Let’s think step by step. We know that Randy has 60 mango trees on his
farm. We also know that he has x less than half as many coconut trees as mango trees.
Let’s use C to represent the number of coconut trees. So we can write: C = (1/2)*60
- x = 30 - x. The total number of trees on Randy’s farm is the sum of the number
of mango trees and coconut trees: 60 + (30 - x) = 90 - x. We are given that the total
number of trees on Randy’s farm is 85, so we can write: 90 - x = 85. Solving for x, we
get: x = 5. The value of x is 5.

6.2.3 FOBAR (FOrward and BAckward Reasoning)

As forward and backward reasoning are complementary (i.e., backward reasoning

may succeed in the cases where forward reasoning fails and vice versa, as Examples

6.2.4 and 6.2.5), we propose to combine them for verification. Intuitively, a candidate

answer is likely to be correct when it receives many votes in forward reasoning and also

helps the LLM to predict the masked numbers in backward reasoning. We estimate the

probability that Âc is correct as

P(Âc)∝
(
PF(Âc)

)α(PB(Âc)
)1−α, (6.4)

with weight α ∈ [0, 1] (see Figure 6.1, bottom). When α = 1, it reduces to Self-

Consistency [237]; When α equals 0, it reduces to backward reasoning for verification. In

71

the experiments, we combine the forward and backward probabilities by the geometric

mean (i.e., α = 0.5). Finally, we select the answer as arg maxÂc∈A P(Âc). The whole

procedure is shown in Algorithm 7.

Example 6.2.4: Forward reasoning fails but backward reasoning succeeds.

Question: The sum of three consecutive odd numbers is 69. What is the smallest of
the three numbers?
Ground-truth answer: 21
Forward reasoning: PF(21) = 0.4,PF(23) = 0.6
Backward reasoning: PB(21) = 0.8,PB(23) = 0.2
FOBAR: P(21) = 0.62,P(23) = 0.38
A backward question: The sum of three consecutive odd numbers is x. What is the
smallest of the three numbers? If we know the answer to the above question is 21,
what is the value of unknown variable x?

Example 6.2.5: Forward reasoning succeeds but backward reasoning fails.

Question: While digging through her clothes for ice cream money, Joan found 15
dimes in her jacket, and 4 dimes in her shorts. How much money did Joan find?
Ground-Truth answer: 1.9
Forward reasoning: PF(1.9) = 0.7,PF(190) = 0.3
Backward reasoning: PB(1.9) = 0.43,PB(190) = 0.57
FOBAR: P(1.9) = 0.57,P(190) = 0.43
A backward question: While digging through her clothes for ice cream money, Joan
found 15 dimes in her jacket, and x dimes in her shorts. How much money did
Joan find? If we know the answer to the above question is 1.9, what is the value of
unknown variable x?

6.2.4 Extension to Non-Mathematical Reasoning Tasks

In mathematical questions, numbers are the most informative words, which are chosen

to be masked. For non-mathematical questions, we can analogously mask an infor-

mative word and ask the LLM to guess the masked word when a candidate answer is

provided.

For example, consider the following question-answer pair from the Last Letter Concate-

nation task [243, 283]: “Take the last letters of each word in ‘Whitney Erika Tj Benito’

and concatenate them” with ground-truth answer “yajo”. We can mask one of the four

words (e.g., “Erika”). Given a candidate answer Âc, we create a backward question as

“Take the last letters of each word in ‘Whitney ___ Tj Benito’ and concatenate them. If we

know the answer to the above question is Âc, which is the word at the blank, Erika or

Dqhjz”, where “Dqhjz” is obtained by shifting each letter of “Erika”. The LLM is more

72

Algorithm 7 FOBAR.

Require: number of reasoning chains MF and MB, prompts PF and PB; ϵ = 10−8;
α = 0.5;

1: Input: a question Q with NQ numbers;
2: feed (PF, Q) to LLM, sample MF reasoning chains with candidate answers {Ai}MF

i=1;

3: deduplicate {Ai}MF
i=1 to A = {Âc}|A|

c=1;
4: compute PF(Âc) by Eq. (6.1) for Âc∈A;
5: for Âc ∈ A do
6: for n = 1, . . . , NQ do
7: create Q̂(n) by masking the nth number num(n) in Q;
8: feed (PB, Q̂(n), T (Âc)) to LLM;
9: sample MB predictions {n̂um(n)

c,b }
MB
b=1;

10: end for
11: compute Zc by Eq. (6.2);
12: end for
13: compute PB(Âc) by Eq. (6.3) for Âc∈A;
14: compute P(Âc) by Eq. (6.4) for Âc ∈ A;
15: return arg maxÂc∈A P(Âc).

likely to choose “Erika” if the second letter in Âc is “a”.

For more general problems like StrategyQA [61], verbs are usually informative (The

NLTK tool [142] can extract verbs). Like the Last Letter Concatenation task, we create

backward questions as multiple-choice questions to restrict the search space of answers.

We use LLMs to generate an antonym word of the masked verb. The masked word and

its antonym are two options in the multiple-choice question. We illustrate the procedure

by an example taken from StrategyQA.

1Question: Yes or No: Would a pear sink in water?
Masked Question: Yes or No: Would a pear ___ in water?
Generate Optional Word: We use the LLM (e.g., GPT-3.5-Turbo) to output the antonym
of "sink" by the below instruction:
Following the examples below, please give me an antonym verb for the last word.
import: export
lead: follow
include: exclude
stay: go
sink: (GPT-3.5-Turbo outputs "float")
Backward Question: Yes or No: Would a pear ___ in water? If we know the answer to
the above question is No, what is the word at the blank, sink or float?

FOBAR can be extended to more complex non-mathematical questions (contain many

sentences): (i) masking a sentence in the question; (ii) using LLMs to generate its

73

opposite sentence; (iii) the masked sentence and its opposite sentence are two options

in the multiple-choice backward question.

6.3 Experiments on Mathematical Tasks

6.3.1 Setup

Datasets. Experiments are conducted on six mathematical data sets which are com-

monly used in evaluating CoT reasoning ability [281, 237]: (i) AddSub [80], (ii) Mul-

tiArith [196], (iii) SingleEQ [110], (iv) SVAMP [170], (v) GSM8K [30], (vi) AQuA [132].

Some statistics and example question-answer pairs are shown in Table 6.1.

Table 6.1: Statistics of data sets used in the experiments.

#samples NQ (mean ± std) example

M
at

h

AddSub 395 2.6 ± 0.7
Benny picked 2 apples and Dan picked 9 apples from the
apple tree. How many apples were picked in total?

MultiArith 600 3.1 ± 0.3
Katie picked 3 tulips and 9 roses to make flower bouquets.
If she only used 10 of the flowers though, how many extra
flowers did Katie pick?

SingleEQ 508 2.2 ± 0.7
Joan went to 4 football games this year. She went to 9 football
games last year. How many football games did Joan go to in
all?

SVAMP 1000 2.8 ± 0.7
Rachel has 4 apple trees. She picked 7 apples from each of
her trees. Now the trees have a total 29 apples still on them.
How many apples did Rachel pick in all?

GSM8K 1319 3.8 ± 1.6
A robe takes 2 bolts of blue fiber and half that much white
fiber. How many bolts in total does it take?

AQuA 254 2.9 ± 1.3

If the population of a city increases by 5% annually, what
will be the population of the city in 2 years time if its current
population is 78000?
Answer Choices: (A) 81900 (B) 85995 (C) 85800 (D) 90000 (E)
None of these

N
on

-M
at

h Last Letter 500 4.0 ± 0.0 Take the last letters of each word in “Whitney Erika Tj Benito”
and concatenate them.

DateU 369 1.2 ± 0.7
The deadline is Jun 1, 2021, which is 2 days away from now.
What is the date a month ago in MM/DD/YYYY?

Baselines. We compare the proposed FOBAR with (i) In-Context Learning (ICL) using

question-answer pairs as demonstrations [16], and recent CoT prompting methods,

including: (ii) CoT prompting [243]; (iii) ComplexCoT prompting [57] which se-

lects demonstrations with complex reasoning steps; (iv) RE2 [253] which re-reads the

question in the prompt; (v) PHP [281] which iteratively uses the previous answers as

hints in designing prompts; (vi) RCoT [254] which reconstructs the question based on

the candidate answer and checks the factual inconsistency for verification; (vii) Self-

74

-Consistency [237], which samples multiple reasoning chains and selects the answer

by majority voting; (viii) Self-Verification [246], which chooses the top-2 candidate

answers obtained from Self-Consistency and re-ranks them based on the verification

scores computed in the backward procedure.

Following Zheng et al. [281], we experiment with three LLMs: (i) text-davinci-003 [161],

(ii) GPT-3.5-Turbo [162], and (iii) GPT-4 [163]. GPT-3.5-Turbo and GPT-4 are more

powerful than text-davinci-003. The proposed FOBAR is general and can be integrated

into any prompting method. Here, we choose the CoT prompting and ComplexCoT

prompting as base prompts as in Zheng et al. [281].

Implementation Details. Following [237, 283, 281], the temperature for sampling is

0.7 for both forward and backward reasoning. The α in Eq. (6.4) is set to 0.5. For text-

davinci-003, MF is 40 as in [237, 281]; whereas the more powerful LLMs (GPT-3.5-Turbo

and GPT-4) use a smaller MF (i.e., 10). MB is set to 8 for all three LLMs. We do not

repeat the experiments using different seeds as conducting experiments without using

different seeds is a standard protocol in the field of CoT-based research due to budget

considerations (e.g., ComplexCoT [57], Self-Consistency [237], PHP [281]).

6.3.2 Main Results

Table 6.2 shows the testing accuracies. As can be seen, for all three LLMs, FOBAR with

ComplexCoT prompting achieves the highest average accuracy. When using CoT as the

base prompt, FOBAR outperforms Self-Consistency most of the time, demonstrating

that combining forward and backward reasoning is more accurate than using forward

reasoning alone. Furthermore, FOBAR performs better than Self-Verification on almost

all datasets, demonstrating that using the proposed simple template in backward

reasoning and the proposed combination is more effective in verification. FOBAR (with

either CoT or ComplexCoT) on GPT-4 achieves the highest average accuracy, as GPT-4

is currently the SOTA LLM. Moreover, for all three LLMs, FOBAR using ComplexCoT

as the base prompt achieves higher accuracy than using CoT on average, which aligns

with observations in [57, 281] that ComplexCoT is better than CoT.

75

Table 6.2: Testing accuracies (%) on six data sets using three LLMs. For each LLM,
methods are grouped according to the base prompt they used. The best in each group is
in bold. Results with † are from the original publications. “–” means that the result is
not reported in the original publication.

AddSub MultiArith SingleEQ SVAMP GSM8K AQuA Average

te
xt

-d
av

in
ci

-0
03

ICL [16] 90.4 37.6 84.3 69.1 16.9 29.1 54.5

C
oT

CoT [243] 91.4 93.6 92.7 79.5 55.8 46.5 76.6
PHP† [281] 91.1 94.0 93.5 81.3 57.5 44.4 77.0
RE2† [253] 91.7 93.3 93.3 81.0 61.6 44.5 77.6
Self-Consistency [237] 91.7 95.9 94.5 83.1 67.9 55.1 81.4
Self-Verification [246] 87.4 95.3 92.9 82.2 59.8 37.4 75.8
FOBAR 91.9 100.0 96.1 86.8 70.8 55.1 83.5

C
om

pl
ex

C
oT ComplexCoT [57] 88.9 95.3 93.7 78.0 67.7 48.8 78.7

PHP† [281] 91.6 96.6 95.0 83.7 68.4 53.1 81.4
Self-Consistency [237] 89.4 98.5 91.1 82.7 79.1 58.7 83.2
Self-Verification [246] 89.9 95.5 94.1 80.1 72.0 38.2 78.3
FOBAR 90.6 100.0 95.3 87.0 78.7 58.7 85.0

G
PT

-3
.5

-T
ur

bo

ICL [16] 88.6 87.6 88.8 80.6 32.2 31.1 68.2

C
oT

CoT [243] 89.4 97.9 92.9 84.2 77.2 54.3 82.7
RE2† [253] 89.9 96.5 95.3 80.0 80.6 58.3 83.4
Self-Consistency [237] 90.6 98.6 93.1 86.4 81.9 62.6 85.5
Self-Verification [246] 90.4 97.4 92.9 83.1 74.9 60.6 83.2
FOBAR 89.4 99.3 94.5 88.9 85.1 62.6 86.6

C
om

pl
ex

C
oT

Complex CoT [57] 87.9 98.3 94.5 81.1 80.7 59.1 83.6
RCoT† [254] 88.2 – 93.0 84.9 84.6 53.3 –
PHP† [281] 85.3 98.0 92.9 83.1 85.1 60.6 84.2
Self-Consistency [237] 88.1 98.8 94.5 85.0 86.4 63.0 86.0
Self-Verification [246] 87.9 96.6 93.3 81.0 78.2 61.4 83.1
FOBAR 88.4 99.8 94.3 88.5 87.4 63.4 87.0

G
PT

-4

ICL [16] 92.1 98.6 94.3 90.9 48.5 48.0 78.7

C
oT

CoT [243] 92.7 99.0 95.7 92.9 93.4 69.7 90.6
Self-Consistency [237] 92.2 99.0 95.9 93.3 94.8 71.3 91.1
Self-Verification [246] 92.7 99.0 95.7 93.1 93.7 70.1 90.7
FOBAR 92.4 99.0 96.1 94.1 95.4 71.3 91.4

C
om

pl
ex

C
oT Complex CoT [57] 91.9 98.3 94.5 92.4 95.1 72.4 90.8

PHP† [281] 89.6 98.1 93.1 91.9 95.5 79.9 91.3
Self-Consistency [237] 91.4 98.5 94.7 93.4 96.2 75.2 91.6
Self-Verification [246] 91.6 98.5 94.7 93.0 95.7 75.6 91.5
FOBAR 91.9 98.6 94.7 94.4 96.4 75.2 91.9

6.3.3 Combining Forward and Backward Probabilities

In this experiment, we study how the combination weight α in Eq. (6.4) affects perfor-

mance. Figure 6.2 shows the testing accuracies (averaged over the six data sets) with

α ∈ [0, 1] using the three LLMs. As can be seen, FOBAR is insensitive to α over a large

range for all three LLMs. In the sequel, we use α = 0.5, which corresponds to the

geometric mean of the forward and backward probabilities.

76

0.0 0.25 0.5 0.75 1.0

81.0

82.0

83.0

84.0

85.0

86.0
ac

cu
ra

cy
 (%

)

ComplexCoT
CoT

(a) text-davinci-003.

0.0 0.25 0.5 0.75 1.0

85.0

85.5

86.0

86.5

87.0

87.5

88.0

ac
cu

ra
cy

 (%
)

ComplexCoT
CoT

(b) GPT-3.5-Turbo.

0.0 0.25 0.5 0.75 1.0

90.5

91.0

91.5

92.0

92.5

93.0

ac
cu

ra
cy

 (%
)

ComplexCoT
CoT

(c) GPT-4.

Figure 6.2: Testing accuracy (averaged over the six data sets) of FOBAR w.r.t. α.

CoT ComplexCoT80

82

84

86

88

ac
cu

ra
cy

 (%
)

83.4

84.9

83.5

85.0

Arithmetic Mean
Geometric Mean

(a) text-davinci-003.

CoT ComplexCoT80

82

84

86

88

90

92

ac
cu

ra
cy

 (%
)

86.5 87.086.6 87.0

Arithmetic Mean
Geometric Mean

(b) GPT-3.5-Turbo.

CoT ComplexCoT86

88

90

92

94

96

ac
cu

ra
cy

 (%
)

91.4
91.9

91.4
91.9

Arithmetic Mean
Geometric Mean

(c) GPT-4.

Figure 6.3: Testing accuracy of FOBAR (averaged over the six data sets) with geomet-
ric/arithmetic mean of forward and backward probabilities.

Alternatively, one can combine the forward and backward probabilities by the arithmetic

mean, i.e., P(Âc) =
1
2

(
PF(Âc) +PB(Âc)

)
. Figure 6.3 shows the testing accuracies for the

three LLMs. As shown, The arithmetic mean has a performance comparable to that of

the geometric mean. Hence, Figures 6.2 and 6.3 together suggest that FOBAR is robust

to the combination of forward and backward probabilities.

6.3.4 Usefulness of Forward and Backward Reasoning

We perform an ablation study on forward (FO) and backward (BA) reasoning. We

consider the four combinations: (i) using neither forward nor backward reasoning

(which reduces to greedy decoding [243]); (ii) use only forward reasoning (i.e., Self-

-Consistency); (iii) use only backward reasoning in selecting answers (i.e., α = 0

in Algorithm 7); (iv) use both forward and backward reasoning (i.e., the proposed

FOBAR). Table 6.3 shows the testing accuracies (averaged over the six data sets) for the

three LLMs. As can be seen, in all the settings, using forward or backward reasoning

77

Table 6.3: Average testing accuracies (%) with different combinations of forward (FO)
and backward (BA) reasoning.

Forward Backward text-davinci-003 GPT-3.5-Turbo GPT-4
C

oT
✗ ✗ 76.6 82.7 90.6

✓ ✗ 81.4 85.5 91.1

✗ ✓ 82.1 86.2 91.2

✓ ✓ 83.5 86.6 91.4

C
om

pl
ex

C
oT ✗ ✗ 78.7 83.6 90.8

✓ ✗ 83.2 86.0 91.6

✗ ✓ 81.3 86.3 91.8

✓ ✓ 85.0 87.0 91.9

0 8 16 24 32 40
MF

76.0

78.0

80.0

82.0

84.0

ac
cu

ra
cy

 (%
)

ComplexCoT
CoT

(a) text-davinci-003.

0 2 4 6 8 10
MF

84.0

85.0

86.0

87.0

ac
cu

ra
cy

 (%
)

ComplexCoT
CoT

(b) GPT-3.5-turbo.

0 2 4 6 8 10
MF

90.0

90.5

91.0

91.5

92.0

ac
cu

ra
cy

 (%
)

ComplexCoT
CoT

(c) GPT-4.

Figure 6.4: Testing accuracy of FOBAR (averaged over the six data sets) with MF.

is consistently better than using neither of them. Moreover, combining forward and

backward reasoning is always the best. Examples 6.2.4 and 6.2.5 show that FOBAR is

able to rectify some cases of failure in forward and backward reasoning, respectively.

6.3.5 Number of Forward and Backward Reasoning Chains

6.3.5.1 Varying MF

In this section, we study how the performance of FOBAR varies with the number of

forward reasoning chains MF. Figure 6.4 shows the testing accuracies (averaged over

the six data sets) for the three LLMs. As can be seen, using a very small MF (e.g., ≤ 5)

is clearly undesirable, but the accuracy saturates quickly with increasing MF. This

suggests that one can use a small MF to reduce the computational cost. Moreover, the

accuracy curves of FOBAR are higher than those of Self-Consistency in Figure 6.6, again

78

0 2 4 6 8 10
MB

82.0

83.0

84.0

85.0
ac

cu
ra

cy
 (%

)

ComplexCoT
CoT

(a) text-davinci-003.

0 2 4 6 8 10
MB

85.5

86.0

86.5

87.0

ac
cu

ra
cy

 (%
)

ComplexCoT
CoT

(b) GPT-3.5-turbo.

0 2 4 6 8 10
MB

91.0

91.2

91.4

91.6

91.8

92.0

ac
cu

ra
cy

 (%
)

ComplexCoT
CoT

(c) GPT-4.

Figure 6.5: Testing accuracy of FOBAR (averaged over the six data sets) with MB.

demonstrating that integrating backward reasoning into verification is effective.

6.3.5.2 Varying MB

Next, we study how the performance of FOBAR varies with the number of backward

reasoning chains MB. Figure 6.5 shows the testing accuracies (averaged over the six

data sets) for the three LLMs. Note that MB = 0 corresponds to using only forward

reasoning. As shown, using a very small MB (e.g., ≤ 4) is clearly undesirable, but the

accuracy saturates quickly when MB increases. Hence, using a small MB can achieve a

good balance between performance and efficiency.

6.4 Analysis on Forward/Backward Reasoning

6.4.1 Saturated Performance of Self-Consistency

In this section, we study how the performance of Self-Consistency varies with the

number of forward reasoning chains MF. Figure 6.6 shows the testing accuracies

(averaged over the six data sets) for the three LLMs. As can be seen, simply sampling

more reasoning paths may not lead to performance improvement, particularly when

MF is large. Moreover, among the failure questions of Self-Consistency, about 60% have

at least one reasoning chain reaches the correct answer (Table 6.4).

79

0 8 16 24 32 40
MF

76.0

78.0

80.0

82.0

84.0
ac

cu
ra

cy
 (%

)

ComplexCoT
CoT

(a) text-davinci-003.

0 2 4 6 8 10
MF

83.0

84.0

85.0

86.0

ac
cu

ra
cy

 (%
)

ComplexCoT
CoT

(b) GPT-3.5-Turbo.

0 2 4 6 8 10
MF

89.5

90.0

90.5

91.0

91.5

92.0

ac
cu

ra
cy

 (%
)

ComplexCoT
CoT

(c) GPT-4.

Figure 6.6: Accuracy (averaged over six data sets) of Self-Consistency versus number of
sampling paths (MF).

Table 6.4: Statistics on the failure cases of Self-Consistency on the six data sets.

AddSub MultiArith SingleEQ SVAMP GSM8K AQuA Total

#failures 47 7 28 150 179 94 505

#failures with no correct answer 28 0 14 57 60 52 211 (≈ 40%)
#failures with at least one correct answer 19 7 14 93 119 42 294 (≈ 60%)

CoT ComplexCoT
 0

10

20

30

40

50

60

ac
cu

ra
cy

 (%
)

13.6
8.6

41.3

48.0
wrong
correct

(a) text-davinci-003.

CoT ComplexCoT
 0

10

20

30

40

50

60

ac
cu

ra
cy

 (%
)

12.8 11.2

41.6 42.1

wrong
correct

(b) GPT-3.5-Turbo.

CoT ComplexCoT
 0

20

40

60

ac
cu

ra
cy

 (%
)

25.0
19.2

47.2
53.0

wrong
correct

(c) GPT-4.

Figure 6.7: Accuracy (averaged over all backward questions across the six data sets) of
predicting the masked number in backward questions with correct/wrong candidate
answers.

6.4.2 Correct Candidate Helps Backward Reasoning

In this experiment, we verify the intuition that the correct candidate answer helps LLM

to predict the masked numbers. Figure 6.7 compares the accuracies of predicting the

masked numbers in backward questions with the correct/wrong candidates. As can be

seen, using the correct candidate has 2× higher accuracy (averaged over the six data

sets) than the wrong ones in predicting masked numbers, demonstrating that using

backward reasoning to verify candidate answers is reasonable.

80

Table 6.5: Accuracies on the non-mathematical tasks of Date Understanding and Last Letter
Concatenation using GPT-3.5-Turbo. Results with † are from the original publications. “–”
means that the result is not reported in the original publication.

Date Understanding Last Letter Concatenation

ICL [16] 52.0 8.0

C
oT

CoT [243] 61.3 81.0
RE2† [253] 47.2 –

Self-Consistency [237] 65.6 81.4
Self-Verification [246] 66.1 81.8

FOBAR 66.4 82.6

C
om

pl
ex

C
oT ComplexCoT [57] 74.8 81.4

RCoT† [254] 71.7 –
Self-Consistency [237] 77.5 81.2
Self-Verification [246] 76.2 81.6

FOBAR 78.0 82.4

6.5 Experiments on Non-Mathematical Tasks

In this section, we perform experiments on three standard non-mathematical tasks: Date

Understanding [243, 57], Last Letter Concatenation [243, 283], StrategyQA [61]. Examples

are shown in Table 6.1. For Date Understanding, numbers are chosen as informative

tokens; for Last Letter Concatenation, the four words in the questions are informative;

for StrategyQA, verbs are chosen as informative tokens. For Last Letter Concatenation

and StrategyQA, we create backward questions as multiple-choice questions to restrict

the search space of answers, see Section 6.2.4 for detailed descriptions. We compare

FOBAR with other CoT-based methods and ICL using GPT-3.5-Turbo. PHP does not

report results on non-mathematical tasks.

Table 6.5 shows the testing accuracies. As shown, FOBAR outperforms all the baselines

with either CoT or ComplexCoT as the base prompt. Moreover, all CoT-based methods

are better than ICL significantly.

6.6 Conclusion

In this chapter, we study the problem of verifying candidate answers to mathematical

problems using chain-of-thought prompting. To complement the use of only forward

reasoning for verification, we use the meta-knowledge of backward reasoning : A

81

simple template is introduced to create questions and a prompt is designed to ask the

LLM to predict a masked word when a candidate answer is provided. Furthermore, we

proposed FOBAR to combine the meta-knowledge of forward and backward reasoning

for verification. Extensive experiments on six standard mathematical data sets and

three LLMs show that the proposed FOBAR achieves state-of-the-art performance on

mathematical reasoning tasks. FOBAR can also be used on non-mathematical tasks and

achieves superior performance.

82

CHAPTER 7

MetaMathQA: Bootstrap Math Questions for LLMs

7.1 Introduction

Recent years have witnessed the rapid development of large language models (LLMs)

which emerge as the favored approach for various applications and demonstrate multi-

dimensional abilities, including instruction following [16, 222, 165], coding assistance

[19, 158, 146, 123], and mathematical problem-solving [268, 88, 145, 31]. Among various

tasks, solving mathematical problems is more challenging as they often require highly

complex multi-step reasoning capabilities. Although some close-sourced models, e.g.,

GPT-3.5-Turbo [161], GPT-4 [163] and PaLM-2 [227], have demonstrated promising

performance on some mathematical problem-solving benchmarks, it is still a mystery

how these models are trained and what data these models use. Therefore, how to equip

open-source LLMs (e.g., LLaMA [226, 227]) with good mathematical problem-solving

meta-knowledge remains an open challenge.

To tackle this challenge, two popular lines of research to improve the mathematical

problem-solving abilities of LLMs are prompt-based methods and finetuning-based methods.

Prompt-based methods [243, 57, 237, 283, 57, 237] aim to activate the meta-knowledge of

forward reasoning by choosing suitable prompting inputs without modifying the model

parameters. Finetuning-based methods enhance the meta-knowledge of mathematical

reasoning by finetuning on mathematical data. While prompt-based methods are

model-dependent and sensitive to many factors, finetuning-based methods, despite

being simple and model-agnostic, heavily rely on effective training data on downstream

mathematical questions.

In this chapter, we aim to augment data for training LLMs to enhance the meta-

knowledge of solving mathematical problems. Specifically, we propose to bootstrap the

questions in both forward and backward reasoning directions. For the forward direction,

we have the original and LLM-rephrased questions. For the backward direction, we

have the self-verification question [246] and FOBAR question proposed in Chapter 6.

To construct backward reasoning questions, we mask a number in a question using

83

D
iv

er
si

ty
 G

ai
n

Te
st

 A
cc

ur
ac

y

w/o Question Bootstrapping
w/ Question Bootstrapping

Data Size
Figure 7.1: GSM8K accuracy of LLaMA-2-7B finetuned on different sizes of answer aug-
mentation data. Larger diversity gain indicates the question is more diverse compared
to the existing questions. Detailed experimental setup is given in Section 7.3.2.

an identifier “x” and ask the model to predict the masked number when the answer

is provided. Different from [246, 103] that apply backward reasoning for inference ver-

ification, we use it as a form of question for language model finetuning. For answers,

we adopt an answer augmentation method based on rejection sampling [268], where

diverse reasoning paths are generated and only those with correct answers are used.

After combining both forward and backward mathematical questions with augmented

answers, we construct a new dataset for fine-tuning, called MetaMathQA. By fine-tuning

LLaMA-2 on MetaMathQA, we obtain a series of MetaMath models. Question boot-

strapping is guided by the insight that a mathematical question represents merely a

single view of the underlying meta-knowledge. Therefore, question bootstrapping can

be viewed as a form of multi-view augmentation in order to enable the transfer of the

meta-knowledge. Leveraging the MetaMathQA dataset, MetaMath demonstrates excep-

tional performance in mathematical reasoning, positioning it among the top performers

on widely recognized evaluation benchmarks.

Another motivation behind question bootstrapping is to enlarge the question diver-

sity [46] such that the question distribution can be rich enough to cover more unseen

scenarios. We quantify the question diversity of the original questions and the proposed

MetaMathQA dataset in Figure 7.1. The diversity gain [12] indicates how diverse the

question is compared to the existing dataset, and a larger diversity gain means the new

question is more different from the existing dataset. With question bootstrapping, the

84

MetaMathQA dataset is much more diverse than the original dataset. We also observe

that the test accuracy without bootstrapped questions rapidly reaches a state of satura-

tion. In contrast, the test accuracy, when using bootstrapped questions, continues to

exhibit a steady increase. Our contributions are summarized as follows.

• We propose a novel question bootstrapping method to augment the training dataset,

resulting in MetaMathQA. Question bootstrapping rewrites questions with both

forward and backward reasoning paths and also leverages LLMs to rephrase the

question text.

• Based on the MetaMathQA dataset, MetaMath is finetuned from state-of-the-art

open-source LLMs (e.g., LLaMA-2), showing excellent elementary mathematical

problem-solving capability.

7.2 The Proposed MetaMathQA

Meta-Question: James buys 5

packs of beef that are 4 pounds each.

The price of beef is $5.50 per pound.

How much did he pay?

MetaMathQA

Answer: He bought 5*4=20

pounds of beef. So he paid 20 * 5.5

= $110. The answer is: 110

Self-Verification Question: James buys x packs of beef that are 4

pounds each. The price of beef is $5.50 per pound. He paid 110. What is

the value of unknown variable x? Answer: ……

Rephrasing Question: What is the total amount that James paid when

he purchased 5 packs of beef, each weighing 4 pounds, at a price of $5.50

per pound? Answer: ……

FOBAR Question: James buys x packs of beef that are 4 pounds each.

The price of beef is $5.50 per pound. How much did he pay? If we know

the answer to the above question is 110, what is the value of unknown

variable x? Answer: ……

Answer Augment: James buys 5 packs of beef that are 4 pounds each,

so he buys a total of 5 * 4 = 20 pounds of beef. The price of beef is $5.50

per pound, so he pays 20 * $5.50 = $110. The answer is: 110

Question Bootstrapping

MetaMath
Finetune

LLaMA-2

Original Data

Figure 7.2: Overview of MetaMath.

The overview of our method is illustrated in Figure 7.2. Given a meta-question (a

sample in the original mathematical training set), we can generate a series of variants.

Specifically, we perform three types of question bootstrapping. Combined with an-

swer augmentation, we present MetaMathQA, a diverse and high-quality mathematical

dataset based on GSM8K and MATH. We then present MetaMath, a family of LLMs

finetuned on MetaMathQA focusing on improving open-source models’ mathematical

reasoning ability.

85

江伟森

7.2.1 Answer Augmentation

Generating more reasoning paths is a simple but effective way to augment the training

set. For a question qi, we use few-shot ComplexCoT prompting with temperature

sampling to generate KAnsAug more reasoning paths {(r(j)
i , a(j)

i) : j = 1, . . . , KAnsAug}:

the question is appended to a few in-context reasoning examples, then fed to the LLM

for generating its reasoning path r(j)
i and answer a(j)

i . We filter out reasoning paths with

correct answers as:

DAnsAug = {(qi, r(j)
i , a(j)

i) : a(j)
i = a⋆i ; i = 1, . . . , Nq; j = 1, . . . , KAnsAug}. (7.1)

Example 7.2.1: Answer Augmentation

Question: James buys 5 packs of beef that are 4 pounds each. The price of beef is
$5.50 per pound. How much did he pay?
Answer: (sample answers from GPT-3.5-Turbo)

7.2.2 Question Bootstrapping by LLM Rephrasing

Generating more answers for mathematical questions with LLMs is straightforward,

but creating questions is more difficult. Math Questions are written by well-educated

teachers. Hence, enlarging the question set through manual creation is time-consuming

and labor-intensive. To address this issue, we propose rephrasing prompting to generate

more questions through LLMs to enhance the meta-knowledge of forward reasoning.

Example 7.2.2: Rephrasing Question

Question: What is the total amount that James paid when he purchased 5 packs of
beef, each weighing 4 pounds, at a price of $5.50 per pound?
Answer: Each pack of beef weighs 4 pounds, so 5 packs weigh 4 * 5 = 20 pounds in
total. The price per pound of beef is $5.50, so the total cost for 20 pounds is 20 * $5.50
= $110. ... The answer is: 110.

Specifically, for a question qi, we append it to the prompt, which is then fed to the

LLM for generating the rephrased question. Example 7.2.2 shows a rephrased question

generated by GPT-3.5-Turbo and the rephrasing prompt for GSM8K is shown in Example

7.2.3. We adopt temperature sampling to sample Krephrase rephrased questions for each

meta-question. It is time-consuming to manually check the consistency between the

rephrased questions and the original questions. To overcome this difficulty, we propose

a supervised method to evaluate the correctness between the rephrased questions and

86

Example 7.2.3: Prompt for Rephrasing GSM8K Questions

You are an AI assistant to help me rephrase questions. Follow the given examples.

Question: Angelo and Melanie want to plan how many hours over the next week they should study
together for their test next week. They have 2 chapters of their textbook to study and 4 worksheets to
memorize. They figure out that they should dedicate 3 hours to each chapter of their textbook and
1.5 hours for each worksheet. If they plan to study no more than 4 hours each day, how many days
should they plan to study total over the next week if they take a 10-minute break every hour, include 3
10-minute snack breaks each day, and 30 minutes for lunch each day?
Rephrase the above question: Angelo and Melanie need to study 2 chapters in their textbook and 4
worksheets for their upcoming test. They have planned to dedicate 3 hours for each chapter and 1.5
hours for each worksheet. They can study for a maximum of 4 hours each day, taking into account
10-minute breaks every hour, 3 10-minute snack breaks per day, and 30 minutes for lunch. How many
days do they need to study in total over the next week to complete their study plan?

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have
left in total?
Rephrase the above question: If Leah had 32 chocolates and her sister had 42, and they both
consumed 35 chocolates, what is the total number of chocolates that they have left?

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Rephrase the above question: What is the amount of money that Olivia has left after purchasing five
bagels for $3 each, if she initially had $23?

Question: There were nine computers in the server room. Five more computers were installed each
day, from monday to thursday. How many computers are now in the server room?
Rephrase the above question: If there were initially nine computers in the server room and five more
computers were added each day from Monday to Thursday, what is the current total number of
computers in the server room?

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more.
How many golf balls did he have at the end of wednesday?
Rephrase the above question: After losing 23 golf balls on Tuesday and an additional 2 on Wednesday,
how many golf balls does Michael have left if he initially had 58 golf balls?

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?
Rephrase the above question: If Jason initially had 20 lollipops and now has 12 after giving some to
Denny, how many lollipops did he give to Denny?

Question: Sam bought a dozen boxes, each with 30 highlighter pens inside, for $10 each box. He
rearranged five of these boxes into packages of six highlighters each and sold them for $3 per package.
He sold the rest of the highlighters separately at the rate of three pens for $2. How much profit did he
make in total, in dollars?
Rephrase the above question: Sam purchased 12 boxes, each containing 30 highlighter pens, at $10
per box. He repackaged five of these boxes into sets of six highlighters and sold them for $3 per set.
He sold the remaining highlighters individually at a rate of three pens for $2. What is the total profit
he made in dollars?

Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they
are done, there will be 21 trees. How many trees did the grove workers plant today?
Rephrase the above question: If there were initially 15 trees in the grove and the grove workers are
planning to plant more trees today, resulting in a total of 21 trees, how many trees did the workers
plant today?

Question: {Q}
Rephrase the above question:

87

the meta-questions. For each rephrased question q̂(j)
i , we use few-shot ComplexCoT

prompting to generate its reasoning path r̂(j)
i and answer â(j)

i , which is then compared

with the ground-truth answer a⋆i . The accuracy for answering the rephrased questions

by GPT-3.5-Turbo is 76.30%, which is comparable to that of answering the original

training questions (80.74%). This suggests that the quality of rephrased questions is

preserved high while the question diversity is improved. We collect the rephrased

questions with correct answers (i.e., â(j)
i = a⋆i) as the augmented data:

Drephrase = {(q̂i, r̂(j)
i , â(j)

i) : â(j)
i = a⋆i ; i = 1, . . . , Nq; j = 1, . . . , Krephrase}. (7.2)

7.2.3 Question Bootstrapping by Backward Reasoning

Backward reasoning plays an important role in answering many mathematical ques-

tions, i.e., starting with a given condition and thinking backward to determine an

unknown variable in the question. One specific example between a question and a

backward question is illustrated in Example 7.2.4. Compared with forward questions,

existing methods (SFT, RFT, WizardMath) have significantly lower accuracy on back-

ward questions, as shown in Figure 7.3, motivating us to bootstrap backward questions

to improve the meta-knowledge of backward reasoning.

Example 7.2.4: Question and Backward Question

Question: James buys 5 packs of beef that are 4 pounds each. The price of beef is
$5.50 per pound. How much did he pay?
Answer: He bought 5*4=20 pounds of beef. He paid 20*5.5=$110. The answer is: 110 ✓

Backward Question: James buys x packs of beef that are 4 pounds each. The price of
beef is $5.50 per pound. How much did he pay? If we know the answer to the above
question is 110, what is the value of unknown variable x?
Answer: The total weight of the beef is 4*x because 4*5.5 = 22. ... The answer is: 27 ✗

To improve the backward reasoning ability of finetuned models, we generate more

questions which can be solved in a backward manner: a number in the question qi is

masked by “x”, while the LLM is asked to predict the value of “x” when its answer a⋆i
is provided. Different from forward reasoning, which generates explicit intermediate

steps towards the final answer, backward reasoning starts with the answer and generates

multiple reasoning steps to predict the masked number. Representative backward

reasoning methods include Self-Verification [246] and FOBAR proposed in Chapter 6.

88

Example 7.2.5: Rewriting Prompt

You are an AI assistant to help me rewrite question into a declarative statement when its
answer is provided. Follow the given examples and rewrite the question.

Question: How many cars are in the parking lot? The answer is 5.
Result: There are 5 cars in the parking lot.

Question: How many trees did the grove workers plant today? The answer is 6.
Result: The grove workers planted 6 trees today.

Question: If they ate 35, how many pieces do they have left in total? The answer is
39.
Result: They have 39 pieces left in total if they ate 35.

Question: How many lollipops did Jason give to Denny? The answer is 8.
Result: Jason gave 8 lollipops to Denny.

Question: How many toys does he have now? The answer is 9.
Result: He now has 9 toys.

Question: How many computers are now in the server room? The answer is 29.
Result: There are 29 computers now in the server room.

Question: How many golf balls did he have at the end of wednesday? The answer is
33.
Result: He had 33 golf balls at the end of Wednesday.

Question: How much money does she have left? The answer is 8.
Result: She has 8 money left.

Question: {Q} The answer is {A}.
Result:

In Self-Verification (SV) [246], the question with the answer is first rewritten into a

declarative statement, e.g., “How much did he pay?” (with the answer 110) is rewritten

into “He paid $10”. Then, a question for asking the value of x is appended, e.g., “What

is the value of unknown variable x?”. We propose using in-context learning to rewrite

the question with the answer into a declarative statement, as shown in Example 7.2.5.

Additionally, Example 7.2.6 gives an augmented example after rewriting. We collect

the new questions and their generated reasoning paths with correct answers as the

augmented data:

DSV = {(q̃(j)
i , r̃(j)

i , ã(j)
i) : ã(j)

i = a⋆i ; i = 1, . . . , Nq; j = 1, . . . , KSV}. (7.3)

89

Example 7.2.6: Self-Verification [246] Question

Question: James buys x packs of beef that are 4 pounds each. The price of beef is
$5.50 per pound. He paid 110. What is the value of unknown variable x?
Answer: To solve this problem, we need to determine the value of x, which represents
the number of packs of beef that James bought. Each pack of beef weighs 4 pounds
and ... The value of x is 5.

Example 7.2.7: FOBAR Question

Question: James buys x packs of beef that are 4 pounds each. The price of beef is
$5.50 per pound. How much did he pay? If we know the answer to the above question
is 110, what is the value of unknown variable x?
Answer: James buys x packs of beef that are 4 pounds each, so he buys a total of 4x
pounds of beef. The price of beef is $5.50 per pound, so the total cost of the beef is
5.50 * 4x = 22x. ... The value of x is 5.

Self-Verification needs to rewrite the question with an answer into a declarative state-

ment, which is challenging for complex questions. To address this issue, The FOBAR

method directly appends the answer to the question, i.e., “If we know the answer to the

above question is {a⋆i } , what is the value of unknown variable x?” Example 7.2.7 shows an

example. We collect the backward questions along with their correct answers (generated

by GPT-3.5-Turbo) as our augmented data:

DFOBAR = {(q̄(j)
i , r̄(j)

i , ā(j)
i) : ā(j)

i = a⋆i ; i = 1, . . . , Nq; j = 1, . . . , KFOBAR}. (7.4)

7.2.4 Finetuning the LLMs

We merge all the augmented data, including answer-augmented data and bootstrapped

questions (Rephrasing, Self-Verification, FOBAR) as

DMetaMathQA = DAnsAug ∪Drephrase ∪DSV ∪DFOBAR.

We finetune an LLM model (parameterized by θ) on DMetaMathQA to obtain the Meta-

Math model by maximizing the log-likelihood of the reasoning path conditioned on the

question, i.e.,

L(θ) = ∑
(q,r,a)∈DMetaMathQA

logP(r | q; θ).

Although we only consider LLaMA-2 and Mistral in this chapter, MetaMathQA can also

be used to finetune other LLMs.

90

7.3 Experiments

7.3.1 Proposed MetaMathQA Dataset

Seed Datasets. We use two popular mathematical reasoning benchmarks (the seed

datasets): (i) GSM8K [30] is a dataset consisting of high-quality grade school math

problems, containing 7, 473 training samples and 1, 319 testing samples; and (ii) MATH

[77] dataset consists of high school math competition problems that span seven subjects

including PreAlgebra, Algebra, Number Theory, Counting and Probability, Geometry, Inter-

mediate Algebra, and PreCalculus. It contains 7, 500 and 5, 000 samples for training and

testing, respectively. Questions in GSM8K [30] take between 2 and 8 steps to reach the

answer, while MATH is much more challenging and needs more steps.

Implementation Details. GPT-3.5-Turbo is used for rephrasing questions as well as

generating answers in all four augmentations, where the temperature is set to 0.7 as in

[237].

Results. Table 7.1 illustrates the detailed description of our MetaMathQA dataset.

Specifically, it contains 155K, 130K, 55K, and 55K augmented samples from AnsAug,

Rephrasing, Self-Verification, and FOBAR augmentations, respectively. Moreover, 240K

samples are augmented from GSM8K, while 155K samples are augmented from MATH.

In the next section, we will conduct experiments to verify that MetaMathQA is beneficial

to improving open-source models’ mathematical reasoning ability.

Table 7.1: Number of samples in the proposed MetaMathQA.

Datasets AnsAug Rephrasing SV FOBAR Overall

MetaMathQA-GSM8K 80K 80K 40K 40K 240K
MetaMathQA-MATH 75K 50K 15K 15K 155K

MetaMathQA 155K 130K 55K 55K 395K

7.3.2 Usefulness of MetaMathQA

In this section, we validate whether the proposed MetaMathQA dataset is useful to

finetune open-source models for improving their mathematical reasoning abilities. All

experiments in Section 7.3.2 were conducted by Longhui Yu, another co-author of

MetaMath [267]. Longhui Yu and I jointly worked on designing the experiments and

91

analyzing the experimental results. Section 7.3.2.2 shows the key findings. More

results can be found in [267].

7.3.2.1 Setup

Models. We use the current state-of-the-art open-source model LLaMA-2 [227], includ-

ing three different parameter sizes: 7B, 13B, and 70B, as the base model for fine-tuning.

GPT-3.5-Turbo is used for rephrasing questions as well as generating answers in all four

augmentations, where the temperature is set to 0.7 as in [237]. The LLaMA-2-7B and

LLaMA-2-13B are trained by fully fine-tuning. LLaMA-2-70B is finetuned by QLoRA [37]

for computational efficiency.

Implementation Details. For the fully fine-tuning setting, we use the AdamW optimizer

to train the model with 3 epochs and the batch size is 128. We use 8 NVIDIA A100

GPUs to train the 7B and 13B models, the learning rate is set as 2e-5 with a 3% learning

rate warmup. For the 70B model QLoRA fine-tuning, the LoRA rank and alpha are

96 and 16, with a 0.05 dropout between the two matrices. The LoRA matrices are

appended to both the attention layer and the MLP layer. We use the same AdamW

optimizer but with a 1e-4 learning rate and without a learning rate warmup. The

Training Prompt (Example 7.3.1) is from Alpaca [222], where the instruction is replaced

by the MetaMathQA question.

Example 7.3.1: Training Prompt

Below is an instruction that describes a task. Write a response that appropriately
completes the request.

Instruction: {instruction}

Response:

Example 7.3.2: Evaluation Prompt

Below is an instruction that describes a task. Write a response that appropriately
completes the request.

Instruction: {instruction}

Response: Let’s think step by step.

Evaluation Prompting. Different from the few-shot prompting evaluation for closed-

source models, we find that zero-shot prompting is better for finetuned LLMs, which

92

also saves more inference costs. Specifically, MetaMath uses the zero-shot Evaluation

Prompt (Example 7.3.2) for GSM8K and MATH, where the instruction is replaced by the

testing question. We set the temperature as 0 for fine-tuned models.

Answer Extraction. Different from the Wei et al. [243], where they use complex string

rules to extract the final answer. In line with WizardMath [145], MetaMath only extracts

the string behind “The answer is:” as the final answer. To teach the model this extraction

method, we append “The answer is: {ground-truth answer}” to the end of answers in the

MetaMathQA dataset.

Baselines. The proposed methods are compared with (i) closed-source models such

as GPT-3.5-Turbo [162], PaLM [29]; (ii) open-source models such as LLaMA-1 [226],

LLaMA-2 [227]; (iii) Supervised Fine-Tuning (SFT), which uses the training set of

the original GSM8K or MATH datasets; (iv) Rejection sampling Fine-Tuning (RFT)

[268] generates and collects correct reasoning paths as augmented data for fine-tuning;

(v) WizardMath [145] which generates samples and trains two reward models using

GPT-3.5-Turbo to select samples for fine-tuning.

Diversity Gain. We use the diversity gain [12] to measure to what extent a new

dataset added to a basic dataset can improve the overall data diversity. For a base

dataset Dbase = {xi = (qi, ri, ai)}N
i=1 with N samples, and a new dataset Dnew = {xi =

(qi, ri, ai)}M
i=1 with M samples, the diversity gain is defined as: Dnew relative to Dbase as:

dgain = 1
M ∑xi∈Dnew minxj∈Dbase(∥ f (xi)− f (xj)∥2

2), where f is the feature extractor and

we use the OpenAI Embedding API text-embedding-ada-002 for feature extraction. For

Figure 7.1, we change the data size of base data and select a fixed set of 20K new data

points that the model has not encountered to form Dnew.

7.3.2.2 Main Results

Main Results. Table 7.2 shows the testing accuracy on GSM8K and MATH. As can be

seen, for all three groups (1-10B, 11-50B, 51-70B), MetaMath achieves the state-of-the-art

performance, demonstrating that MetaMathQA is useful for improving open-source

models’ mathematical reasoning ability.

We conduct experiments to study the effect of augmentations in MetaMathQA. We first

finetune the LLaMA-2-7B model on augmented GSM8K (MetaMath-GSM8K) data, and

test the finetuned model on GSM8K and MATH. Table 7.3 shows the testing accuracy of

93

Table 7.2: Comparison of testing accuracy to existing LLMs on GSM8K and MATH.

#params GSM8K MATH

closed-source models
GPT-4 [163] - 92.0 42.5
GPT-3.5-Turbo [162] - 80.8 34.1
PaLM [29] 8B 4.1 1.5
PaLM [29] 62B 33.0 4.4
PaLM [29] 540B 56.5 8.8
PaLM-2 [4] 540B 80.7 34.3
Flan-PaLM 2 [4] 540B 84.7 33.2
Minerva [121] 8B 16.2 14.1
Minerva [121] 62B 52.4 27.6
Minerva [121] 540B 58.8 33.6

open-source models (1-10B)
LLaMA-2 [227] 7B 14.6 2.5
MPT [153] 7B 6.8 3.0
Falcon [172] 7B 6.8 2.3
InternLM [89] 7B 31.2 -
GPT-J [233] 6B 34.9 -
ChatGLM 2 [272] 6B 32.4 -
Qwen [6] 7B 51.6 -
Baichuan-2 [256] 7B 24.5 5.6
SFT [227] 7B 41.6 -
RFT [268] 7B 50.3 -
MAmooTH-CoT [269] 7B 50.5 10.4
WizardMath [145] 7B 54.9 10.7
MetaMath 7B 66.5 19.8

open-source models (11-50B)
LLaMA-2 [227] 13B 28.7 3.9
LLaMA-2 [227] 34B 42.2 6.2
MPT [153] 30B 15.2 3.1
Falcon [172] 40B 19.6 2.5
Vicuna [28] 13B 27.6 -
SFT [227] 13B 50.0 -
RFT [268] 13B 54.8 -
MAmooTH-CoT [269] 13B 56.3 12.9
WizardMath [145] 13B 63.9 14.0
MetaMath 13B 72.3 22.4

open-source models (51-70B)
LLaMA-2 [227] 70B 56.8 13.5
RFT [268] 70B 64.8 -
Platypus [115] 70B 70.6 15.6
MAmooTH-CoT [269] 70B 72.4 21.1
WizardMath [145] 70B 81.6 22.7
MetaMath 70B 82.3 26.6

94

Table 7.3: Effect of different question augmentation with LLaMA-2-7B finetuned on
GSM8K or MATH.

finetuned on GSM8K finetuned on MATH
AnsAug Rep. SV FOBAR GSM8K MATH AnsAug Rep. SV FOBAR GSM8K MATH

SFT [227] ✗ ✗ ✗ ✗ 41.6 3.0 ✗ ✗ ✗ ✗ 13.8 4.7

MetaMath

✓ ✗ ✗ ✗ 59.6 4.4 ✓ ✗ ✗ ✗ 28.4 12.9
✗ ✓ ✗ ✗ 59.7 4.4 ✗ ✓ ✗ ✗ 30.4 12.4
✓ ✓ ✗ ✗ 60.6 4.4 ✓ ✓ ✗ ✗ 29.1 15.3
✓ ✓ ✓ ✓ 64.4 5.7 ✓ ✓ ✓ ✓ 34.6 17.7

SFT RFT WizardMath MetaMath
0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)

GSM8K GSM8K-Backward

Figure 7.3: The accuracy gap between GSM8K and GSM8K-Backward.

different combinations of augmentations. As can be seen, using all augmentations is

significantly better than using answer augmentation alone, showing the effectiveness of

three proposed question augmentations. Furthermore, combining backward questions

also improves the testing accuracy. These observations also can be seen from Table 7.3,

where we fine-tune LLaMA-2-7B on the augmented MATH (MetaMathQA-MATH) data

then evaluate the model on GSM8K and MATH.

To evaluate the backward mathematical capability, we propose a GSM8K-Backward

test set, including 1270 backward questions by using SV and FOBAR to augment the

original GSM8K test set (as shown in Example 7.2.6 and Example 7.2.7). Figure 7.3 shows

the accuracy comparison of different 7B mathematical LLMs between the GSM8K and

GSM8K-Backward datasets. As can be seen, existing LLMs struggle to solve mathematical

problems in backward rationales and our MetaMath has a significant improvement

on both datasets. Specifically, the ways where different LLMs solve the backward

mathematical problem are illustrated through Example 7.3.3.

95

Example 7.3.3: Case study about Reverse Mathematical problem

Question: A robe takes 2 bolts of blue fiber and x% that much white fiber. It takes a
total of 3 bolts. What is the value of unknown variable x? (Ground-truth answer is 50)
SFT Answer: We know that the robe takes 2 * x% = 3 bolts. So 2 * x% = 3. So x% =
3/2 = 60%. So x = 60. #### 60. The answer is: 60
RFT Answer: We know that the robe takes 2 bolts of blue fiber and x% that much
white fiber, so it takes 2 * 0.01 = 0.02 bolts of white fiber. So in total, it takes 2 + 0.02 =
«2+0.02=2.02»2.02 bolts of blue and white fiber. Since we know that it takes 3 bolts in
total, we can write the equation 2.02 = 3. We can solve for x by multiplying both sides
by 3, getting 6.04 = 3 * 0.02. We can then write the equation 6.04 = 3, and solve for x
by dividing both sides by 6.04, getting x = 0.02. #### 2 The answer is: 2
WizardMath Answer: Step 1: Define the variables. Let x% of the blue fiber be
represented by the variable y. Then, the robe takes 2y bolts of blue fiber. Step 2: Set
up the equation. Since the robe takes a total of 3 bolts, we can write the equation as
follows: 2y + xy = 3 Step 3: Simplify the equation. We can simplify the equation by
combining the terms with y: 2y + xy = 3 3y + xy = 3 Step 4: Solve for x. To solve for x,
we need to isolate xy on one side of the equation. We can do this by subtracting 3y
from both sides: 3y + xy - 3y = 3 - 3y xy = 3 - 3y Step 5: Find the value of x. Now, we
need to find the value of x. We know that xy = 3 - 3y, and we want to express y in
terms of x. To do this, we can divide both sides of the equation by x: (3 - 3y) / x = y
Step 6: Solve for y. Now, we can solve for y by multiplying both sides of the equation
by x: 3 - 3y = xy 3 - 3y = x(3 - 3y) Step 7: Simplify the equation. We can simplify the
equation by expanding and combining like terms: 3 - 3y = 3 - 3y Step 8: Find the
value of x. Now, we can see that y = 0, which means that x% of the blue fiber is 0%.
Since we are dealing with a percentage, the only possible value for x is 0. Therefore,
the value of unknown variable x is 0. Final Answer: x = 0. The answer is: x
Our Answer: The robe takes 2 bolts of blue fiber. It takes x% of that much white
fiber, which means it takes (x/100) * 2 bolts of white fiber. In total, it takes 3 bolts. So,
we can write the equation as: 2 + (x/100) * 2 = 3 Let’s simplify and solve for x: 2 +
(2x/100) = 3 To isolate x, we subtract 2 from both sides of the equation: 2 + (2x/100) -
2 = 3 - 2 (2x/100) = 1 To solve for x, we multiply both sides of the equation by 100/2:
(2x/100) * (100/2) = 1 * (100/2) x = 50 The value of x is 50. #### 50 The answer is: 50

7.4 Conclusion

In this chapter, we focus on improving open-source LLMs’ meta-knowledge of solving

mathematical problems. By bootstrapping mathematical questions on GSM8K and

MATH, we present a high-quality and diverse dataset MetaMathQA, involving forward

reasoning and backward reasoning samples. Our family of LLMs finetuned on Meta-

MathQA, called MetaMath, have achieved state-of-the-art on mathematical benchmarks

among all open-source LLMs, demonstrating that MetaMathQA is useful for boosting

LLM mathematical problem-solving capabilities.

96

CHAPTER 8

Conclusion & Future Works

8.1 Conclusion

Meta-learning is used to accelerate learning new tasks from meta-knowledge extracted

from historical tasks. In this thesis, we studied the meta-learning problems when tasks

are complex. We first extend learning a meta-regularization for simple linear regression

tasks to nonlinear tasks by proximal kernelized extension (Chapter 3). To deal with

complex tasks, whose model weights are diverse, we formulate task-specific knowledge

into a subspace mixture, where each subspace represents one type of knowledge (Chapter

4). As language models are usually large, learning multiple meta-models causes a

heavy burden on computation and memory. We further propose to learn a pool of

multiple meta-prompts for prompt learning in language models (Chapter 5). For more

challenging mathematical tasks, we activated the backward reasoning meta-knowledge

(based on CoT prompting) to verify candidate answers and proposed to combine

the forward and backward reasoning for verification by LLMs (Chapter 6). As open-

source models struggle to solve challenging mathematical problems, we proposed

bootstrapping questions from both forward and backward directions to enhance the diversity

of mathematical reasoning meta-knowledge (Chapter 7). Experiments are conducted in

each chapter to verify the usefulness of the proposed algorithms. Detailed summaries

for each chapter are listed as follows.

1. In Chapter 3, we proposed an efficient algorithm to learn a meta-regularization

for nonlinear models by kernelized proximal regularization. Nonlinearity allows

more powerful models like deep networks to deal with complex tasks. We formu-

lated the inner problem as a dual problem and introduced a learnable proximal

regularizer to the base learner. We theoretically established the local and global

convergence of the proposed algorithm. Experiments on benchmark regression

and classification datasets demonstrate that learning a nonlinear meta-regularizer

is effective. Moreover, for regression tasks, the proposed algorithm has a closed-

form solution in the base learner and, thus, is very efficient.

97

2. In Chapter 4, we formulated task model parameters into multiple subspaces

and proposed a novel meta-learning algorithm MUSML to learn the subspace

bases. MUSML is very general, thus, can be used on linear and nonlinear models.

Generalization of the proposed MUSML is analyzed theoretically. Experiments on

synthetic demonstrate that MUSML can discover the underlying subspaces of task

model parameters. Empirical results on real-world datasets show that MUSML

achieves state-of-the-art performance on complex tasks.

3. In Chapter 5, we proposed using a pool of meta-prompts to extract knowledge

from meta-training tasks. We construct instance-dependent prompts by combining

the meta-prompts via attention. We propose a novel algorithm MetaPrompter to

combine learning a prompt pool with a novel soft verbalizer. Language models

are frozen and only the pool is learnable, thus, the proposed MetaPrompter is

parameter-efficient. Meta-learning a prompt pool is more flexible than meta-

learning only a single prompt initialization (as in MetaPrompting) and allows

better adaptation of complex tasks.

4. In Chapter 6, we studied the problem of verifying candidate answers to math-

ematical problems using chain-of-thought prompting. To complement the use

of only forward reasoning meta-knowledge for verification, we activated the

meta-knowledge backward reasoning: A simple template is introduced to create

questions and a prompt is designed to ask the LLM to predict a masked word

when a candidate answer is provided. Furthermore, we proposed FOBAR to

combine forward and backward reasoning meta-knowledge for verification. Ex-

tensive experiments on six standard mathematical data sets and three LLMs show

that the proposed FOBAR achieves state-of-the-art performance on mathematical

reasoning tasks. Additionally, FOBAR can also be used on non-mathematical tasks

and achieves superior performance on three datasets.

5. In Chapter 7, we focused on data augmentation for training open-source LLMs

to improve the mathematical meta-knowledge. We proposed to bootstrapping

mathematical questions on GSM8K and MATH by rewriting questions with both

forward and backward reasoning paths. We presented a high-quality and di-

verse dataset MetaMathQA, involving forward reasoning and backward reasoning

samples. By finetuning open-source LLMs on MetaMathQA, we obtain a fam-

ily of models MetaMath, which have achieved state-of-the-art on mathematical

98

benchmarks among all open-source LLMs. Remarkably, MetaMath-7B reaches

66.5% on GSM8K and 19.8% on MATH, surpassing previous open-source LLMs

by a significant margin. This chapter further emphasizes the importance of the

characteristics of the training data in boosting LLM problem-solving capabilities.

8.2 Future Works

In the future, we would like to work on the following topics.

• Meta-learning low-rank matrices for subspace learning. In Chapter 4, we studied

the problem of learning multiple subspaces for building task-specific models. For

task-specific models with parameter θτ ∈ Rdin×dout , the size of meta-parameters is

K × m × din × dout (K is the number of subspaces, m is the subspace dimension).

For large models (e.g., LLaMA-2-7B [227]), this approach suffers from a heavy

burden on memory and computation. One promising solution is to meta-learn low-

rank matrices for subspace adaptation. Specifically, the task-specific model is built

as θ+ ∑K
k=1 λk,τBkΣτAk, where θ and {Bk ∈ Rdin×m, Ak ∈ Rm×dout : k = 1, . . . , K}

are meta-parameters shared across all tasks, λk,τ is a weight to indicate whether

the kth subspace is suitable for task τ, and Στ is task-specific mixing coefficients

learned in the base learner. By learning low-rank matrices, the number of meta-

parameters reduces to din × dout + K × m × (din + dout).

• Structured MetaPrompter for black-box LLMs. In Chapter 5, we propose MetaPrompter

to learn a pool of continuous meta-prompts for constructing instance-dependent

prompts. As the instance-dependent prompt is appended to x after the input

embedding layer, MetaPrompter is only suitable for open-source models. Most

commercial models like ChatGPT are close-source, thus, only accept discrete to-

kens (e.g,. “James buys x packs of beef that are 4 pounds each. The price of beef is

$5.50 per pound. How much did he pay?”) as inputs. To extend our MetaPrompter

to closed-source models, we can train a generator G to produce a pool of discrete

prompts and a retriever R to choose the suitable prompt. Specifically, for an input

x, we wrap it by a template “the question {x} is related to below knowledge” and

feed it to the generator multiple times with different seeds to obtain a pool of

discrete prompts {p1, . . . , pK} (e.g., “mathematics”, “food”). For each prompt pi,

we append it to the input, which is then fed to the closed-source LLM to obtain

99

an output ŷi = LLM([x, pi]). By comparing ŷi with the ground-truth, we obtain a

score to measure the quality of the prompt. The key challenge is designing the

training objective and collecting diverse datasets to learn universal generator and

retriever.

• Backward reasoning for non-mathematical tasks. In Chapter 6, we leveraged

the backward reasoning meta-knowledge to verify candidate answers to math-

ematical problems. Backward reasoning is a general method and we extend it

to two non-mathematical tasks. For general non-mathematical reasoning tasks,

the key challenge is to find the informative words to be masked. A possible

direction is training a model or designing a prompt to identify the informative

words/sentences automatically.

100

Appendix

Proof for Theoretical Results in Chapter 3

Proof of Proposition 3.2.1. (i) Notice that w(prox)
τ is affine in θ, thus, EτESτ

EQτ ∑(x,y)∈Qτ

(x⊤w(prox)
τ − y)2 is convex in θ. The CommonMean algorithm is using stochastic gradi-

ent descent to minimize the population risk, and the global convergence of θt follows

from the stochastic convex optimization [44].

(ii) Similarly, w(gd)
τ is affine in ψ, thus, the loss EτESτ

EQτ ∑(x,y)∈Qτ
(x⊤w(gd)

τ − y)2 is

convex in ψ. Using stochastic gradient descent, ψt achieves global convergence [44]. By

the below Proposition 3.2.2, w̄ is the unique optima, and we finish the proof.

Proof of Proposition 3.2.2. For each task τ, let vτ = w⋆
τ − w̄, then {vτ} are i.i.d. ran-

dom variables with zero mean. Denote Cτ =
(
λI+X⊤

τ Xτ

)−1
. As w(prox)

τ =Cτ

(
λθ+X⊤

τ yτ

)

and yτ = Xτw⋆
τ + ξτ, it follows that

EτESτ
EQτ ∑

(x,y)∈Qτ

(x⊤w(prox)
τ − y)2

= EτESτ
EQτ ∑

(x,y)∈Qτ

(λx⊤Cτθ+ x⊤CτX⊤
τ (Xτw⋆

τ + ξτ)− x⊤w⋆
τ − ξ)2

= EτESτ
EQτ ∑

(x,y)∈Qτ

(λx⊤Cτθ+ x⊤CτX⊤
τ (Xτw̄ + Xτvτ + ξτ)− x⊤w̄ − x⊤vτ − ξ)2

= EτESτ
EQτ ∑

(x,y)∈Qτ

(λx⊤Cτθ+ x⊤CτX⊤
τ Xτw̄ − x⊤w̄)2 + constant (8.1)

= EτESτ
EQτ ∑

(x,y)∈Qτ

(λx⊤Cτ(θ− w̄))2 + constant

= λ2σ2
x nqEτESτ

(θ− w̄)⊤C2
τ(θ− w̄) + constant,

where we have used the setting that x, ξ, Xτ, ξτ, and vτ are independent to obtain (8.1).

Since EτESτ
C2

τ ⪰ λ−2I, we conclude that θ = w̄ is the unique optima.

101

For MAML with one gradient step w(gd)
τ = ψ − γX⊤

τ (Xτψ − yτ), it follows that

EτESτ
EQτ ∑

(x,y)∈Qτ

(x⊤w(gd)
τ − y)2

= EτESτ
EQτ ∑

(x,y)∈Qτ

(x⊤(I − γX⊤
τ Xτ)ψ + γx⊤X⊤

τ yτ − y)2

= EτESτ
EQτ ∑

(x,y)∈Qτ

(x⊤(I − γX⊤
τ Xτ)ψ + γx⊤X⊤

τ (Xτw̄ + Xτvτ + ξτ)− x⊤w̄ − x⊤vτ − ξ)2

= EτESτ
EQτ ∑

(x,y)∈Qτ

(
x⊤(I − γX⊤

τ Xτ)(ψ − w̄)
)2

+ constant

= nqσ2
xEτESτ

∥(I − γX⊤
τ Xτ)(ψ − w̄)∥2 + constant.

As γ < 1/σ2
x , we conclude that ψ = w̄ is the unique optima.

Proof of Proposition 3.2.4. The ridge regression has an efficient closed-form solution

w(prox) =
(

λI + X⊤X
)−1 (

λθ+ X⊤y
)

.

Using the SVD decomposition of X = UΣV⊤ and y = Xw⋆ + ξ, we obtain

w(prox) =
(

I + λ−1VΣ2V⊤
)−1 (

Va0 + V⊥b0 + λ−1VΣU⊤y
)

=
(

I + λ−1VΣ2V⊤
)−1 (

Va0 + V⊥b0 + λ−1VΣ2a⋆ + λ−1VΣUξ
)

(8.2)

= V⊥b0 + V(I + λ−1Σ2)−1
(

a0 + λ−1Σ2a⋆
)
+ V

(
λΣ−1 + Σ

)−1
U⊤ξ, (8.3)

where we have used U⊤y = U⊤(Xw⋆ + ξ) = U⊤UΣV⊤(Va⋆ + V⊥b⋆) + U⊤ξ = Σa⋆ +

U⊤ξ in (8.2) and the Woodbury identity in (8.3). Then the estimation error is

w(prox) − w⋆ = V⊥(b0 − b⋆) + V(I + λ−1Σ2)−1 (a0 − a⋆) + V
(

λΣ−1 + Σ
)−1

U⊤ξ.

Taking the square ℓ2-norm and then expectation over ξ on both sides, we have

Eξ∥w(prox)−w⋆∥2

= ∥V⊥(b0−b⋆)∥2+∥V(I+λ−1Σ2)−1 (a0 − a⋆) ∥2 +Eξ∥V
(

λΣ−1+Σ
)−1

U⊤ξ∥2 (8.4)

= ∥b0 − b⋆∥2 + ∥(I + λ−1Σ2)−1 (a0 − a⋆) ∥2 +Eξ∥
(

λΣ−1 + Σ
)−1

U⊤ξ∥2

= ∥b̃∥2 +
ns

∑
j=1

(
λãj

λ + ν2
j

)2

+
ns

∑
j=1

(
νjσξ

λ + ν2
j

)2

,

102

where (8.4) follows from the fact that V⊥ is V’s orthogonal complement and ξ is inde-

pendent with X (also the Σ, U and V).

Proof of Lemma 3.4.2. As Lmeta(θ, ϕ) ≡ ∑τ∈T ∑(x,y)∈Qτ
ℓ(ŷ, y), it suffices to show that

ℓ(ŷ, y) is Lipschitz-smooth in (θ, ϕ).

Using the chain rule, we have

∇(θ,ϕ)ℓ(ŷ, y) = ∇1ℓ(ŷ, y)∇(θ,ϕ)ŷ, (8.5)

∇(θ,ϕ)ŷ = ∇(θ,ϕ) fθ(z) + (∇(θ,ϕ)K(Zτ, z))⊤ατ + (∇(θ,ϕ)ατ)
⊤K(Zτ, z). (8.6)

The Lipschitz properties of direct derivatives ∇1ℓ(ŷ, y),∇(θ,ϕ) fθ(z),∇(θ,ϕ)K(Zτ, z),

and K(Zτz) follow from the Assumption 1. It remains to claim ατ and ∇(θ,ϕ)ατ are

Lipschitz. Let p =
[

fθ(z1); . . . ; fθ(zns);K(Zτ, z1); . . . ;K(Zτ, zns)
]
∈ Rns+n2

s be the input

of the dual problem.

(i) Claim: ατ is Lipschitz w.r.t. (θ, ϕ) and ατ(p) is Lipschitz-smooth w.r.t. p. To show

ατ is Lipschitz w.r.t. (θ, ϕ), it suffices to show that ∥∇(θ,ϕ)ατ∥ is bounded. By the chain

rule, ∇(θ,ϕ)ατ = ∇pατ∇(θ,ϕ)p. Denote the dual objective by g(p, α). By the implicit

function theorem [198], ∇pατ = −
(
∇2

αg(p, ατ)
)−1 ∂2

∂p∂α g(p, ατ), where

∇2
αg(p, ατ) = ∑

(xi,yi)∈Sτ

∇2
1ℓ(fτ(zi), yi)K(Zτ, zi)K(Zτ, zi)

⊤ +K(Zτ, Zτ)

∂2

∂p∂α
g(p, ατ) =

[
K(Zτ, Zτ)D | (K(Zτ, Zτ)D)⊗ α⊤

τ + v⊤ ⊗ I + I ⊗ α⊤
τ

]

D = diag([∇2
1ℓ(fτ(z1), y1); . . . ;∇2

1ℓ(fτ(zns), yns)])

v = [∇1ℓ(fτ(z1), y1); . . . ;∇1ℓ(fτ(zns), yns)],

and ⊗ is the Kronecker product. It follows from the Assumption 3.4.1 that both

∇2
αg(p, ατ) and ∂2

∂p∂α g(p, ατ) are Lipschitz w.r.t. p. Hence, we conclude that ∇pατ(p) is

Lipschitz, ατ(p) is Lipschitz-smooth w.r.t. p, and ∥∇pατ(p)∥ is bounded. Again, the

boundedness of ∇(θ,ϕ)p follows from the Lipschitz-smoothness of p w.r.t. (θ, ϕ). We

conclude that ατ is Lipschitz w.r.t. (θ, ϕ).

(ii) Claim: ∇(θ,ϕ)ατ is Lipschitz w.r.t. (θ, ϕ). Given (θ, ϕ) and (θ′, ϕ′), we show that

∥∇(θ,ϕ)ατ(θ, ϕ)−∇(θ,ϕ)ατ(θ
′, ϕ′)∥ ≤ η∥(θ, ϕ)− (θ′, ϕ′)∥

103

for some η > 0. For notation simplicity, let Φ = (θ, ϕ) and Φ′ = (θ′, ϕ′), then we have

∥∇Φατ(Φ)−∇Φατ(Φ
′)∥

= ∥∇pατ(p(Φ))∇Φp(Φ)−∇pατ(p(Φ′))∇Φp(Φ′)∥

= ∥∇pατ(p(Φ))∇Φp(Φ)−∇pατ(p(Φ′))∇Φp(Φ′)±∇pατ(p(Φ))∇Φp(Φ′)∥

≤ ∥∇pατ(p(Φ))∥∥∇Φp(Φ)−∇Φp(Φ′)∥+ ∥∇Φp(Φ′)∥∥∇pατ(p(Φ))−∇pατ(p(Φ′))∥.

As p(Φ) and ατ(p) are Lipschitz-smooth, there exists η > 0 such that

∥∇Φατ(Φ)−∇Φατ(Φ
′)∥ ≤ η∥Φ − Φ′∥+ η∥p(Φ)− p(Φ′)∥

≤ η∥Φ − Φ′∥+ η∥Φ − Φ′∥

= 2η∥Φ − Φ′∥.

We conclude that ∇Φατ is 2η-Lipschitz.

By (i) and (ii), ℓ is Lipschitz-smooth w.r.t. the meta-parameters (θ, ϕ). Therefore,

Lmeta(θ, ϕ) is Lipschitz-smooth w.r.t. (θ, ϕ) with a Lipschitz constant ηmeta > 0.

Proof of Theorem 3.4.1. Let Φ = (θ, ϕ). Let ζt = ∇ΦtLmeta(Φt)− 1
b ∑τ∈Bt gτ, where

1
b ∑τ∈Bt gτ is an unbiased estimation of ∇ΦtLmeta(Φt), Using the Taylor expansion, we

have

Lmeta(Φt+1)

≤ Lmeta(Φt) +∇ΦtLmeta(Φt)
⊤(Φt+1 − Φt) +

1
2

ηmeta∥Φt+1 − Φt∥2

≤ Lmeta(Φt)− ηt(1 −
ηmetaηt

2
)∥∇ΦtLmeta(Φt)∥2 + ηt∇⊤

Φt
Lmeta(Φt)ζt +

1
2

ηmetaη2
t σ2

g.

Taking conditional expectation over ζt−1 on both sides and then taking the expectation

over the random training samples, we have

ELmeta(Φt+1) ≤ ELmeta(Φt)−
ηt

2
E∥∇ΦtLmeta(Φt)∥2 +

1
2

ηmetaη2
t σ2

g, (8.7)

where we have used 1 − ηmetaηt
2 ≥ 1

2 . Rearranging the above inequality and summing

over t, we have
T

∑
t=1

ηt

2
E∥∇ΦtLmeta(Φt)∥2 ≤ ELmeta(Φ1) + ηmetaσ2

g

T

∑
t=1

η2
t . (8.8)

Since ηt = min(1/
√

T, 1/2ηmeta), we have ∑T
t=1 η2

t ≤ 1. Diving both sides by 1/
√

T, we

conclude that min1≤t≤T E∥∇ΦtLmeta(Φt)∥2 = O
(

σ2
g/

√
T
)
.

104

Proof of Proposition 4.2.1. This proposition is a property of linear regression tasks and

has been mentioned in [111, 228]. We include the proof here for completeness.

By the definition y = x⊤w + ξ, we have

Eτ∼p(τ)E(x,y)∼τ,(x′,y′)∼τyy′xx′⊤

= Eτ∼p(τ)Ex∼N (0,I),x′∼N (0,I),ξ∼N (0,σ2
ξ),ξ

′∼N (0,σ2
ξ)
(x⊤w⋆

τ + ξ)(x′⊤w⋆
τ + ξ ′)xx′⊤

= Eτ∼p(τ)Ex∼N (0,I),x′∼N (0,I),ξ∼N (0,σ2
ξ),ξ

′∼N (0,σ2
ξ)
(x⊤w⋆

τx′⊤w⋆
τxx′⊤

+ x⊤w⋆
τξ ′xx′⊤ + ξx′⊤w⋆

τxx′⊤ + ξξ ′xx′⊤)

= Eτ∼p(τ)Ex∼N (0,I),x′∼N (0,I)x
⊤w⋆

τx′⊤w⋆
τxx′⊤,

where the last equality follows from the independence of ξ, ξ ′, x, and x′. Using the

independence of x, and x′, we obtain

Eτ∼p(τ)Ex∼N (0,I),x′∼N (0,I)x
⊤w⋆

τx′⊤w⋆
τxx′⊤

= Eτ∼p(τ)(Ex∼N (0,I)xx⊤)w⋆
τw⋆⊤

τ (Ex′∼N (0,I)x
′x′⊤)

= Eτ∼p(τ)w
⋆
τw⋆⊤

τ .

Proof of Theorem 3.4.2. Let Φ = (θ, ϕ). By the chain rule, we have

∇ΦLmeta(Φ) =
1
|T | ∑

τ∈T
∑

(x,y)∈Qτ

∇1ℓ(ŷ, y)∇Φŷ (8.9)

=
1
|T |G(Φ)⊤∇ΦM(Φ), (8.10)

where G(Φ) ≡
[
· · · ∇1ℓ(ŷ, y) · · ·

]
∈ Rnq|T | stacks all gradients of the losses on query

examples as a vector. Hence, we establish the Polyak-Lojasiewicz (PL) inequality [179]

105

as follows

∥∇ΦLmeta(Φ)∥2 =
1

|T |2
∥∥∥G(Φ)⊤∇ΦM(Φ)

∥∥∥
2

=
1

|T |2G(Φ)⊤∇ΦM(Φ)∇⊤
ΦM(Φ)G(Φ)

≥ µ

|T |2 ∥G(Φ)∥2 (uniform conditioning)

=
µ

|T |2 ∑
τ∈T

∑
(x,y)∈Qτ

(∇1ℓ(ŷ, y))2

≥ µρ

2|T |2 ∑
τ∈T

∑
(x,y)∈Qτ

(ℓ(ŷ, y)− min
y′

ℓ(y′, y)) (strongly convex)

≥ µρ

2|T |

(
Lmeta(Φ)− min

Φ
Lmeta(Φ)

)
.

The PL inequality is commonly used in proving the global convergence of nonconvex

optimization [105, 134]. Then, min1≤t≤T ELmeta(Φt) − minΦ Lmeta(Φ) = O
(

σ2
g/

√
T
)

follows directly from Theorem 1.

For full gradient descent, the gradient noise ζt = ∇ΦtLmeta(Φt)− 1
b ∑τ∈Bt gτ = 0, thus,

the noisy gradient will be the true gradient. By the Taylor expansion, it follows that

Lmeta(Φt+1)− min
Φ

Lmeta(Φ)

≤ Lmeta(Φt) +∇⊤
Φt
Lmeta(Φt)(Φt+1 − Φt) +

βmeta

2
∥Φt+1 − Φt∥2 − min

Φ
Lmeta(Φ)

= Lmeta(Φt)− η∥∇ΦtLmeta(Φt)∥2 +
η2βmeta

2
∥∇ΦLmeta(Φt)∥2 − min

Φ
Lmeta(Φ)

≤
(

1 − ηµρ

4|T |

)
(Lmeta(Φt)− min

Φ
Lmeta(Φ)),

and we obtain the exponential convergence.

Proof for Theoretical Results in Chapter 4

Proof of Lemma 4.3.3. Claim 1: For k ∈ {1, . . . , K} and i ∈ {1, . . . , ns}, it holds that

∥vτ,k − vτ,k,i∥ ≤ 2ϱ(1 + αϱρ2m)J

ρβ
√

mns
.

106

By the update rule in the base learner, we have

∥v(t′+1)
τ,k − v(t′+1)

τ,k,i ∥ = ∥v(t′)
τ,k − α∇

v(t′)
τ,k
L(Sτ; Skv(t′)

τ,k)− v(t′)
τ,k,i + α∇

v(t′)
τ,k,i

L(S (i)
τ ; Skv(t′)

τ,k,i)∥

≤ ∥v(t′)
τ,k −v(t′)

τ,k,i∥+α∥∇
v(t′)

τ,k
L(Sτ; Skv(t′)

τ,k)−∇
v(t′)

τ,k,i
L(S (i)

τ ; Skv(t′)
τ,k,i)∥.

For the second term, by the chain rule, it follows that
∥∥∥∥∇v(t′)

τ,k
L(Sτ; Skv(t′)

τ,k)−∇
v(t′)

τ,k,i
L(S (i)

τ ; Skv(t′)
τ,k,i)

∥∥∥∥

=
∥∥∥S⊤

k

(
∇wL(Sτ; Skv(t′)

τ,k)−∇wL(S (i)
τ ; Skv(t′)

τ,k,i)
)∥∥∥

≤ ∥Sk∥F · ∥
1
ns

∑
j ̸=i

(
∇wℓ(f (zj; Skv(t′)

τ,k))−∇wℓ(f (zj; Skv(t′)
τ,k,i))

)

+
1
ns

(
∇wℓ(f (zi; Skv(t′)

τ,k))−∇wℓ(f (z′i; Skv(t′)
τ,k,i))

)
∥ (8.11)

≤ ρ
√

m

(
1
ns

∑
j ̸=i

∥∥∥∇wℓ(f (zj; Skv(t′)
τ,k))−∇wℓ(f (zj; Skv(t′)

τ,k,i))
∥∥∥

+
1
ns

∥∥∥∇wℓ(f (zj; Skv(t′)
τ,k))

∥∥∥+ 1
ns

∥∥∥∇wℓ(f (z′i; Skv(t′)
τ,k,i))

∥∥∥
)

(8.12)

≤ ρ
√

m

(
1
ns

∑
j ̸=i

β∥Skv(t′)
τ,k − Skv(t′)

τ,k,i∥+
2ϱ

ns

)
(8.13)

≤ ρ
√

m
(

ns − 1
ns

β∥Sk∥∥v(t′)
τ,k − v(t′)

τ,k,i∥+
2ϱ

ns

)
(8.14)

≤mρ2β∥v(t′)
τ,k − v(t′)

τ,k,i∥+
2ϱρ

√
m

ns
, (8.15)

where Eq.(8.11) uses the norm inequality ∥Ax∥ ≤ ∥A∥∥x∥ and ∥Sk∥ ≤ ∥Sk∥F, Eq.(8.12)

uses the compactness assumption (thus ∥Sk∥F ≤ ρ
√

m) and the triangle inequality,

Eq.(8.13) uses the Lipschitzness of ∇wℓ(f (x; w), y), Eq.(8.14) uses the Lipschitzness of

ℓ(f (x; w), y), and Eq.(8.15) uses the boundedness of ∥Sk∥ again. Hence, we obtain a

recursive inequality

∥v(t′+1)
τ,k − v(t′+1)

τ,k,i ∥ ≤ (1 + αmρ2β)∥v(t′)
τ,k − v(t′)

τ,k,i∥+
2αϱρ

√
m

ns
. (8.16)

107

By induction, we obtain a bound for v(J)
τ,k − v(J)

τ,k,i:

∥v(J)
τ,k − v(J)

τ,k,i∥ ≤ (1 + αmρ2β)∥v(0)
τ,k − v(0)

τ,k,i∥+
2αϱρ

√
m

ns

J−1

∑
t′=0

(1 + αβρ2m)t′

≤ 2ϱ(1 + αϱρ2m)J

ρβ
√

mns
, (8.17)

where we have used the fact v(0)
τ,k = v(0)

τ,k,i.

Claim 2: The stability constant of the base learner is 2ϱ(1+αβρ2m)J

ns
.

Next, we analyze the stability constant of the base learner:

ESτ
Ez′i∼τ |ℓ(f (xi; Skvτ,k), yi)− ℓ(f (xi; Skvτ,k,i), yi)|

≤ βESτ
Ez′i∼τ∥Skvτ,k,i − Skvτ,k∥ (8.18)

≤ βESτ
Ez′i∼τ∥Sk∥F∥vτ,k,i − vτ,k∥ (8.19)

≤ βρ
√

mESτ
Ez′i∼τ∥vτ,k,i − vτ,k∥ (8.20)

≤ βρ
√

m · 2ϱ(1 + αβρ2m)J

ρβ
√

mns
(8.21)

=
2ϱ(1 + αβρ2m)J

ns
, (8.22)

where Eq.(8.18) uses the Lipschitz property of ℓ, Eq.(8.19) uses the norm inequality,

Eq.(8.20) uses the boundedness of ∥Sk∥F, Eq.(8.21) uses the inequality (8.17). The

above equality reveals that the stability constant in Theorem 11 of [14] (β2 there) is

2ϱ(1+αβρ2m)J

ns
.

Proof of Theorem 4.3.1. The proof is based on the connection between generalization

and stability [14].

We adopt the notations used in the proof of Lemma 4.3.3. We apply Lemma 4.3.2 to our

algorithm and obtain

ESτ [Ez∼τℓ(f (x; Skvτ,k), y)−L(Sτ; Skvτ,k)]
2

≤ ν2

2ns
+ 3νESτ

Ez′i∼τ |ℓ(f (xi; Skvτ,k), yi)− ℓ(f (xi; Skvτ,k,i), yi)|

≤ ν2

2ns
+

6νϱ(1 + αβρ2m)J

ns
, (8.23)

108

where (8.23) uses the equality (8.22) in Lemma 4.3.3. By the Cauchy-Schwarz inequality,

we have

ESτ |Ez∼τℓ(f (x; Skvτ,k), y)−L(Sτ; Skvτ,k)| ≤
√

ν2

2ns
+

6νϱ(1 + αβρ2m)J

ns
. (8.24)

To provide an upper bound of R(S)− R̂(S), we need to address the randomness in kτ:

R(S)− R̂(S) = EτESτ [Ez∼τℓ(f (x; Skτ
vτ,kτ

), y)−L(Sτ; Skτ
vτ,kτ

)]

= EτESτ

K

∑
k=1

I[kτ=k] [Ez∼τℓ(f (x; Skvτ,k), y)−L(Sτ; Skvτ,k)]

≤ Eτ

K

∑
k=1

ESτ
I[kτ=k] |Ez∼τℓ(f (x; Skvτ,k), y)−L(Sτ; Skvτ,k)|

≤ Eτ

K

∑
k=1

ESτ |Ez∼τℓ(f (x; Skvτ,k), y)−L(Sτ; Skvτ,k)|

≤ K

√
ν2

2ns
+

6νϱ(1 + αβρ2m)J

ns
,

where the first inequality is because the empirical loss can be smaller than the population

loss, and the last inequality follows from the Eq.(8.24).

Proof of Theorem 4.3.2. By the definition of excess risk, we have

0 ≤ R(S)−R⋆

= Eτ[ESτ
Ez∼τℓ(f (x; Skτ

vτ,kτ
), y)−ESτ

L(Sτ; Skτ
vτ,kτ

) +ESτ
L(Sτ; Skτ

vτ,kτ
)

−ESτ
L(Sτ; Skτ

v⋆
τ,kτ

) +ESτ
L(Sτ; Skτ

v⋆
τ,kτ

)−Ez∼τℓ(z; w⋆
τ)] (8.25)

= EτESτ [Ez∼τℓ(f (x; Skτ
vτ,kτ

), y)−L(Sτ; Skτ
vτ,kτ

)]

+EτESτ

[
L(Sτ; Skτ

vτ,kτ
)−L(Sτ; Skτ

v⋆
τ,kτ

)
]

+EτESτ

[
1

Ntr
∑

z∈Sτ

ℓ(f (x; Skτ
v⋆

τ,kτ
), y)−Ez∼τℓ(f (x; w⋆

τ), y)

]

≤ K

√
ν2

2Ntr
+

6νϱ(1 + αβρ2m)J

Ntr
+EτESτ

[
L(Sτ; Skτ

vτ,kτ
)−L(Sτ; Skτ

v⋆
τ,kτ

)
]

+EτESτ

[
L(Sτ; Skτ

v⋆
τ,kτ

)−L(Sτ; w⋆
τ, Skτ

)
]
+EτESτ

∥∇wL(Sτ; ξτ)∥∥w⋆
τ,S⊥

kτ

∥ (8.26)

(8.27)

109

≤ K

√
ν2

2Ntr
+

6νϱ(1 + αβρ2m)J

Ntr
+EτESτ

[
L(Sτ; Skτ

vτ,kτ
)−L(Sτ; Skτ

v⋆
τ,kτ

)
]

+ ϱEτESτ
dist(w⋆

τ,Skτ
), (8.28)

where identity (8.25) follows by introducing two additional terms EτESτ
L(Sτ; Skτ

vτ,kτ
)

and EτESτ
L(Sτ; Skτ

v⋆
τ,kτ

), Eq.(8.26) uses the bound in Theorem 4.3.1 and the mean value

theorem (we decompose w⋆
τ = w⋆

τ,Skτ
+ w⋆

τ,S⊥
kτ

and ξτ ∈ [w⋆
τ,Skτ

, w⋆
τ]), and Eq.(8.28) fol-

lows from the Lipschitzness assumption and ESτ

[
L(Sτ; Skτ

v⋆
τ,kτ

)−L(Sτ; w⋆
τ, Skτ

)
]
≤ 0

as v⋆
τ,kτ

is an exact solution of the problem minvτ L(Sτ; Skτ
vτ). We conclude that

R(S)−R⋆

≤ K

√
ν2

2Ntr
+

6νϱ(1 + αβρ2m)J

Ntr
+EτESτ

[
L(Sτ; Skτ

vτ,kτ
)−L(Sτ; Skτ

v⋆
τ,kτ

)
]

+ ϱEτESτ
dist(w⋆

τ,Skτ
)

≤ K

√
ν2

2Ntr
+

6νϱ(1 + αβρ2m)J

Ntr
+ ρ

√
m EτESτ

∥vτ,kτ
− v⋆

τ,kτ
∥+ ϱEτESτ

dist(w⋆
τ,Skτ

),

where the last inequality is from the Lipschitzness of ℓ and ∥Skτ
∥ ≤ ∥Skτ

∥F ≤ ρ
√

m.

110

References

[1] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algo-

rithm for Boltzmann machines. Cognitive science, 1985.

[2] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond,

and J Zico Kolter. Differentiable convex optimization layers. In Neural Information

Processing Systems, 2019.

[3] Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended

PAC-Bayes theory. In International Conference on Machine Learning, 2018.

[4] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,

Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,

Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-

Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebas-

tian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez

Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury,

Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry,

Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi

Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan

Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier

Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi

Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz,

Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy,

Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric

Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhong-

tao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez,

Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew

Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope,

Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy,

Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov,

David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran

Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting,

111

Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao

Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and

Yonghui Wu. PaLM 2 technical report. Preprint arXiv:2305.10403, 2023.

[5] Sudarshan Babu, Pedro Savarese, and Michael Maire. Online meta-learning via

learning with layer-distributed memory. In Neural Information Processing Systems,

2021.

[6] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,

Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji

Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men,

Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng

Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang,

Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng

Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang

Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report.

Preprint arXiv:2309.16609, 2023.

[7] Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable guar-

antees for gradient-based meta-learning. In International Conference on Machine

Learning, 2019.

[8] Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and

generalization of bilevel programming in hyperparameter optimization. In Neural

Information Processing Systems, 2021.

[9] Yujia Bao, Menghua Wu, Shiyu Chang, and Regina Barzilay. Few-shot text

classification with distributional signatures. In International Conference on Learning

Representations, 2020.

[10] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning

rule. In International Joint Conference on Neural Networks, 1991.

[11] Luca Bertinetto, Joao F Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning

with differentiable closed-form solvers. In International Conference on Learning

Representations, 2018.

[12] Jeff Bilmes. Submodularity in machine learning and artificial intelligence. Preprint

arXiv:2202.00132, 2022.

112

[13] John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation with

structural correspondence learning. In Conference on Empirical Methods in Natural

Language Processing, 2006.

[14] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of

Machine Learning Research, 2002.

[15] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex Optimization.

Cambridge University Press, 2004.

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris

Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack

Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and

Dario Amodei. Language models are few-shot learners. In Neural Information

Processing Systems, 2020.

[17] Paul H Calamai and Jorge J Moré. Projected gradient methods for linearly con-

strained problems. Mathematical Programming, 1987.

[18] Junfan Chen, Richong Zhang, Yongyi Mao, and Jie Xu. ContrastNet: A contrastive

learning framework for few-shot text classification. In AAAI Conference on Artificial

Intelligence, 2022.

[19] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,

Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy

Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,

Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens

Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,

Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,

Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,

Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,

Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,

Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario

113

Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating

large language models trained on code. Preprint arXiv:2107.03374, 2021.

[20] Qi Chen, Changjian Shui, and Mario Marchand. Generalization bounds for meta-

learning: An information-theoretic analysis. In Neural Information Processing

Systems, 2021.

[21] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-

ple framework for contrastive learning of visual representations. In International

Conference on Machine Learning, 2020.

[22] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin

Huang. A closer look at few-shot classification. In International Conference on

Learning Representations, 2018.

[23] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of

Thoughts Prompting: Disentangling computation from reasoning for numerical

reasoning tasks. Transactions on Machine Learning Research, 2023.

[24] Xinyun Chen, Maxwell Lin, Nathanael Schaerli, and Denny Zhou. Teaching

large language models to self-debug. In Annual Meeting of the Association for

Computational Linguistics, 2023.

[25] Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis, and He He. Meta-learning

via language model in-context tuning. In Annual Meeting of the Association for

Computational Linguistics, 2022.

[26] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and

Zicheng Liu. Dynamic convolution: Attention over convolution kernels. In

IEEE Conference on Computer Vision and Pattern Recognition, 2020.

[27] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Grad-

Norm: Gradient normalization for adaptive loss balancing in deep multitask

networks. In International Conference on Machine Learning, 2018.

[28] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,

Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica,

and Eric P. Xing. Vicuna: An open-source chatbot impressing GPT-4 with 90%

ChatGPT quality. Technical report, 2023.

114

[29] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav

Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-

tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,

Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,

Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,

Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay

Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin

Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek

Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani

Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana

Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr

Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,

Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,

Jeff Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling language modeling with

pathways. Preprint arXiv:2204.02311, 2022.

[30] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,

Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,

Hesse Christopher, and Schulman John. Training verifiers to solve math word

problems. Preprint arXiv:2110.14168, 2021.

[31] Katherine M. Collins, Albert Q. Jiang, Simon Frieder, Lionel Wong, Miri Zilka,

Umang Bhatt, Thomas Lukasiewicz, Yuhuai Wu, Joshua B. Tenenbaum, William

Hart, Timothy Gowers, Wenda Li, Adrian Weller, and Mateja Jamnik. Evaluating

language models for mathematics through interactions. Preprint arXiv:2306.01694,

2023.

[32] Alexis Conneau and Guillaume Lample. Cross-lingual language model pretrain-

ing. In Neural Information Processing Systems, 2019.

[33] Ganqu Cui, Shengding Hu, Ning Ding, Longtao Huang, and Zhiyuan Liu. Pro-

totypical verbalizer for prompt-based few-shot tuning. In Annual Meeting of the

Association for Computational Linguistics, 2022.

[34] Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Learn-

ing to learn around a common mean. In Neural Information Processing Systems,

2018.

115

[35] Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil.

Learning-to-learn stochastic gradient descent with biased regularization. In

International Conference on Machine Learning, 2019.

[36] Giulia Denevi, Massimiliano Pontil, and Carlo Ciliberto. The advantage of condi-

tional meta-learning for biased regularization and fine tuning. In Neural Informa-

tion Processing Systems, 2020.

[37] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA:

Efficient finetuning of quantized llms. In Neural Information Processing Systems,

2023.

[38] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

Pre-training of deep bidirectional transformers for language understanding. In

North American Chapter of the Association for Computational Linguistics, 2019.

[39] Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong Zhang. Active prompting

with chain-of-thought for large language models. Preprint arXiv:2302.12246, 2023.

[40] Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng,

and Maosong Sun. OpenPrompt: An open-source framework for prompt-learning.

In Annual Meeting of the Association for Computational Linguistics, 2022.

[41] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,

and Trevor Darrell. Decaf: A deep convolutional activation feature for generic

visual recognition. In International Conference on Machine Learning, 2014.

[42] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng

Gao, Ming Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for

natural language understanding and generation. In Neural Information Processing

Systems, 2019.

[43] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth

16x16 words: Transformers for image recognition at scale. In International Confer-

ence on Learning Representations, 2021.

[44] John C Duchi. Introductory lectures on stochastic optimization. The Mathematics

of Data, 2018.

116

[45] Benjamin Ehret, Christian Henning, Maria Cervera, Alexander Meulemans, Jo-

hannes Von Oswald, and Benjamin F Grewe. Continual learning in recurrent

neural networks. In International Conference on Learning Representations, 2021.

[46] Ronen Eldan and Yuanzhi Li. TinyStories: How small can language models be

and still speak coherent english? Preprint arXiv:2305.07759, 2023.

[47] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence the-

ory of gradient-based model-agnostic meta-learning algorithms. In International

Conference on Artificial Intelligence and Statistics, 2020.

[48] Alec Farid and Anirudha Majumdar. Generalization bounds for meta-learning

via PAC-Bayes and uniform stability. In Neural Information Processing Systems,

2021.

[49] Hongliang Fei and Ping Li. Cross-lingual unsupervised sentiment classifica-

tion with multi-view transfer learning. In Annual Meeting of the Association for

Computational Linguistics, 2020.

[50] Jessica Ficler and Yoav Goldberg. Controlling linguistic style aspects in neural

language generation. In Workshop on Stylistic Variation, 2017.

[51] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for

fast adaptation of deep networks. In International Conference on Machine Learning,

2017.

[52] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online

meta-learning. In International Conference on Machine Learning, 2019.

[53] Sebastian Flennerhag, Andrei A Rusu, Razvan Pascanu, Francesco Visin, Hu-

jun Yin, and Raia Hadsell. Meta-learning with warped gradient descent. In

International Conference on Learning Representations, 2020.

[54] Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt, David

Silver, and Satinder Singh. Bootstrapped meta-learning. In International Conference

on Learning Representations, 2022.

[55] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimil-

iano Pontil. Bilevel programming for hyperparameter optimization and meta-

learning. In International Conference on Machine Learning, 2018.

117

[56] Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing

smaller language models towards multi-step reasoning. In International Conference

on Machine Learning, 2023.

[57] Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-

based prompting for multi-step reasoning. In International Conference on Learning

Representations, 2023.

[58] Shani Gamrian and Yoav Goldberg. Transfer learning for related reinforcement

learning tasks via image-to-image translation. In International Conference on Ma-

chine Learning, 2019.

[59] Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun. Hybrid attention-based pro-

totypical networks for noisy few-shot relation classification. In AAAI Conference

on Artificial Intelligence, 2019.

[60] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. In

International Conference on Learning Representations, 2018.

[61] Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan

Berant. Did aristotle use a laptop? a question answering benchmark with implicit

reasoning strategies. Transactions of the Association for Computational Linguistics,

2021.

[62] Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods

for nonconvex stochastic programming. SIAM Journal on Optimization, 2013.

[63] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without

forgetting. In IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[64] Shaogang Gong, Stephen McKenna, and John J Collins. An investigation into

face pose distributions. In International Conference on Automatic Face and Gesture

Recognition, 1996.

[65] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge

distillation: A survey. International Journal of Computer Vision, 2021.

[66] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the

iteration complexity of hypergradient computation. In International Conference on

Machine Learning, 2020.

118

[67] Liang-Yan Gui, Yu-Xiong Wang, Deva Ramanan, and José MF Moura. Few-shot

human motion prediction via meta-learning. In European Conference on Computer

Vision, 2018.

[68] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing

implicit bias in terms of optimization geometry. In International Conference on

Machine Learning, 2018.

[69] Junliang Guo, Linli Xu, and Enhong Chen. Jointly masked sequence-to-sequence

model for non-autoregressive neural machine translation. In Annual Meeting of

the Association for Computational Linguistics, 2020.

[70] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing,

and Rogerio Feris. SpotTune: transfer learning through adaptive fine-tuning. In

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

[71] Karen Hambardzumyan, Hrant Khachatrian, and Jonathan May. WARP: Word-

level adversarial reprogramming. In Annual Meeting of the Association for Computa-

tional Linguistics, 2021.

[72] Chengcheng Han, Zeqiu Fan, Dongxiang Zhang, Minghui Qiu, Ming Gao, and

Aoying Zhou. Meta-learning adversarial domain adaptation network for few-shot

text classification. In Annual Meeting of the Association for Computational Linguistics,

2021.

[73] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In IEEE Conference on Computer Vision and Pattern

Recognition, 2016.

[74] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution

of fashion trends with one-class collaborative filtering. In International Conference

on World Wide Web, 2016.

[75] Tong He, Chunhua Shen, Zhi Tian, Dong Gong, Changming Sun, and Youliang

Yan. Knowledge adaptation for efficient semantic segmentation. In IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019.

[76] Yun He, Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao,

Yaguang Li, Zhao Chen, Donald Metzler, Heng-Tze Cheng, and Ed H. Chi. Hy-

119

perPrompt: Prompt-based task-conditioning of transformers. In International

Conference on Machine Learning, 2022.

[77] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart,

Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem

solving with the MATH dataset. In Neural Information Processing Systems: Datasets

and Benchmarks, 2021.

[78] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network. Preprint arXiv:1503.02531, 2015.

[79] Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are rea-

soning teachers. In Annual Meeting of the Association for Computational Linguistics,

2023.

[80] Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kush-

man. Learning to solve arithmetic word problems with verb categorization. In

Conference on Empirical Methods in Natural Language Processing, 2014.

[81] Yutai Hou, Hongyuan Dong, Xinghao Wang, Bohan Li, and Wanxiang Che.

MetaPrompting: Learning to learn better prompts. In International Conference on

Computational Linguistics, 2022.

[82] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin

De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly.

Parameter-efficient transfer learning for NLP. In International Conference on Ma-

chine Learning, 2019.

[83] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for

text classification. In Annual Meeting of the Association for Computational Linguistics,

2018.

[84] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii,

Alexander Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling

step-by-step! outperforming larger language models with less training data

and smaller model sizes. In Annual Meeting of the Association for Computational

Linguistics, 2023.

120

[85] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,

Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language

models. In International Conference on Learning Representations, 2022.

[86] Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan Liu, Jingang Wang, Juanzi

Li, Wei Wu, and Maosong Sun. Knowledgeable prompt-tuning: Incorporating

knowledge into prompt verbalizer for text classification. In Annual Meeting of the

Association for Computational Linguistics, 2022.

[87] Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun

Yu, and Jiawei Han. Large language models can Self-Improve. Preprint

arXiv:2210.11610, 2022.

[88] Shima Imani, Liang Du, and Harsh Shrivastava. MathPrompter: Mathematical

reasoning using large language models. In Annual Meeting of the Association for

Computational Linguistics, 2023.

[89] InternLM. InternLM: A multilingual language model with progressively en-

hanced capabilities. Technical report, 2023.

[90] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Con-

vergence and generalization in neural networks. In Neural Information Processing

Systems, 2018.

[91] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with

gumbel-softmax. In International Conference on Learning Representations, 2016.

[92] Adrián Javaloy and Isabel Valera. RotoGrad: Gradient homogenization in multi-

task learning. In International Conference on Learning Representations, 2021.

[93] Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling

meta-learning and continual learning with online mixtures of tasks. In Neural

Information Processing Systems, 2019.

[94] Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-

learning with task-specific adaptation over partial parameters. In Neural Informa-

tion Processing Systems, 2020.

[95] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Theoretical convergence of multi-step

model-agnostic meta-learning. Journal of Machine Learning Research, 2022.

121

[96] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-

vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,

Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,

Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and

William El Sayed. Mistral 7B. Technical Report arXiv:2310.06825, 2023.

[97] Weisen Jiang, James Kwok, and Yu Zhang. Effective meta-regularization by

kernelized proximal regularization. In Neural Information Processing Systems, 2021.

[98] Weisen Jiang, Yu Zhang, and James Kwok. SEEN: Few-shot classification with

self-ensemble. In International Joint Conference on Neural Networks, 2021.

[99] Weisen Jiang, James Kwok, and Yu Zhang. Subspace learning for effective meta-

learning. In International Conference on Machine Learning, 2022.

[100] Weisen Jiang, Hansi Yang, Yu Zhang, and James Kwok. An adaptive policy to

employ sharpness-aware minimization. In International Conference on Learning

Representations, 2023.

[101] Weisen Jiang, Yu Zhang, and James Kwok. Effective structured-prompting by

meta-learning and representitive verbalizer. In International Conference on Machine

Learning, 2023.

[102] Weisen Jiang, Baijiong Lin, Han Shi, Yu Zhang, Zhenguo Li, and James Kwok.

BYOM: Building your own multi-task model for free. Preprint arXiv:2310.01886,

2024.

[103] Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu, Yu Zhang, Zhenguo Li,

and James Kwok. Forward-backward reasoning in large language models for

mathematical verification. In Findings of Annual Meeting of the Association for

Computational Linguistics, 2024.

[104] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, and Trevor Darrell.

Few-shot object detection via feature reweighting. In IEEE International Conference

on Computer Vision, 2019.

[105] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient

and proximal-gradient methods under the Polyak-Łojasiewicz condition. In Joint

European Conference on Machine Learning and Knowledge Discovery in Databases,

2016.

122

[106] Seyed Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ra-

machandran. LAMBADA: Backward chaining for automated reasoning in natural

language. In Annual Meeting of the Association for Computational Linguistics, 2022.

[107] Tushar Khot, Daniel Khashabi, Kyle Richardson, Peter Clark, and Ashish Sabhar-

wal. Text modular networks: Learning to decompose tasks in the language of

existing models. In Conference of the North American Chapter of the Association for

Computational Linguistics, 2021.

[108] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In International Conference on Learning Representations, 2015.

[109] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke

Iwasawa. Large language models are zero-shot reasoners. In Neural Information

Processing Systems, 2022.

[110] Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni,

and Siena Dumas Ang. Parsing algebraic word problems into equations. Transac-

tions of the Association for Computational Linguistics, 2015.

[111] Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, and Sewoong Oh.

Meta-learning for mixed linear regression. In International Conference on Machine

Learning, 2020.

[112] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images. Technical report, 2009.

[113] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level

concept learning through probabilistic program induction. Science, 2015.

[114] Ken Lang. NewsWeeder: Learning to filter netnews. In Proceedings of International

Machine Learning Conference, 1995.

[115] Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and

powerful refinement of LLMs. Preprint arXiv:2308.07317, 2023.

[116] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak,

Jascha Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth

evolve as linear models under gradient descent. In Neural Information Processing

Systems, 2019.

123

[117] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-

learning with differentiable convex optimization. In IEEE Conference on Computer

Vision and Pattern Recognition, 2019.

[118] Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned

layerwise metric and subspace. In International Conference on Machine Learning,

2018.

[119] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-

efficient prompt tuning. In Empirical Methods in Natural Language Processing, 2021.

[120] D. Lewis. Reuters-21578 text categorization test collection. Distribution 1.0, AT&T

Labs-Research, 1997.

[121] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk

Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo

Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra.

Solving quantitative reasoning problems with language models. In Neural Infor-

mation Processing Systems, 2022.

[122] Junyi Li, Tianyi Tang, Jian-Yun Nie, Ji-Rong Wen, and Xin Zhao. Learning to

transfer prompts for text generation. In North American Chapter of the Association

for Computational Linguistics, 2022.

[123] Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,

Chenghao Mou, Marc Marone, Christopher Akiki, Jia LI, Jenny Chim, Qian

Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene,

Joel Lamy-Poirier, Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Logesh Kumar

Umapathi, Jian Zhu, Ben Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra

Murthy, Jason T Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca,

Manan Dey, Zhihan Zhang, Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni,

Paulo Villegas, Fedor Zhdanov, Tony Lee, Nadav Timor, Jennifer Ding, Claire S

Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu,

Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy,

Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean

Hughes, Thomas Wolf, Arjun Guha, Leandro Von Werra, and Harm de Vries.

StarCoder: may the source be with you! Transactions on Machine Learning Research,

2023.

124

[124] Shiyang Li, Jianshu Chen, Zhiyu Chen, Xinlu Zhang, Zekun Li, Hong Wang, Jing

Qian, Baolin Peng, Yi Mao, Wenhu Chen, and Xifeng Yan. Explanations from

large language models make small reasoners better. In Workshop on Sustainable AI,

2024.

[125] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for

generation. In Annual Meeting of the Association for Computational Linguistics, 2021.

[126] Yuyang Li, Zhenzhenand Zhang, Jian-Yun Nie, and Dongsheng Li. Improving few-

shot relation classification by prototypical representation learning with definition

text. In Annual Conference of the North American Chapter of the Association for

Computational Linguistics, 2022.

[127] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-SGD: Learning to learn

quickly for few-shot learning. Preprint arXiv:1707.09835, 2017.

[128] Zhengzhong Liang, Steven Bethard, and Mihai Surdeanu. Explainable multi-hop

verbal reasoning through internal monologue. In Conference of the North American

Chapter of the Association for Computational Linguistics, 2021.

[129] Baijiong Lin, Weisen Jiang, Feiyang Ye, Yu Zhang, Pengguang Chen, Ying-Cong

Chen, Shu Liu, and James Kwok. Dual-balancing for multi-task learning. Preprint

arXiv:2308.12029, 2023.

[130] Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization.

Neural Computation, 2007.

[131] Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative

language model via parameter-efficient transfer learning. In Empirical Methods in

Natural Language Processing, 2020.

[132] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction

by rationale generation: Learning to solve and explain algebraic word problems.

In Annual Meeting of the Association for Computational Linguistics, 2017.

[133] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse

gradient descent for multi-task learning. Neural Information Processing Systems,

2021.

125

[134] Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization

in over-parameterized non-linear systems and neural networks. Applied and

Computational Harmonic Analysis, 2022.

[135] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architec-

ture search. In International Conference on Learning Representations, 2018.

[136] Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and

Weizhu Chen. What makes good in-context examples for GPT-3? In Proceedings of

Deep Learning Inside Out, 2022.

[137] Jinlu Liu, Liang Song, and Yongqiang Qin. Prototype rectification for few-shot

learning. In European Conference on Computer Vision, 2020.

[138] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-

ham Neubig. Pre-train, prompt, and predict: A systematic survey of prompting

methods in natural language processing. ACM Computing Surveys, 2023.

[139] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and

Jie Tang. GPT understands, too. Preprint arXiv:2103.10385, 2021.

[140] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie

Tang. P-Tuning: Prompt tuning can be comparable to fine-tuning across scales

and tasks. In Annual Meeting of the Association for Computational Linguistics, 2022.

[141] Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and Verena Rieser. Benchmark-

ing natural language understanding services for building conversational agents.

In International Workshop on Spoken Dialogue Systems Technology, 2019.

[142] Edward Loper and Steven Bird. NLTK: The natural language toolkit. In ACL

Workshop, 2002.

[143] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In

International Conference on Learning Representations, 2019.

[144] Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay

Rajpurohit, Peter Clark, and Ashwin Kalyan. Dynamic prompt learning via policy

gradient for semi-structured mathematical reasoning. In International Conference

on Learning Representations, 2022.

126

[145] Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao,

Xiubo Geng, Qingwei Lin, Shifeng Chen, and Dongmei Zhang. WizardMath:

Empowering mathematical reasoning for large language models via reinforced

Evol-Instruct. Preprint arXiv:2308.09583, 2023.

[146] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,

Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. WizardCoder: Empow-

ering code large language models with evol-instruct. In International Conference

on Learning Representations, 2024.

[147] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah

Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank

Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir

Yazdanbakhsh, and Peter Clark. Self-Refine: Iterative refinement with self-

feedback. In Neural Information Processing Systems, 2023.

[148] Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and

Aliaksei Severyn. Teaching small language models to reason. In Annual Meeting

of the Association for Computational Linguistics, 2023.

[149] Andreas Maurer and Tommi Jaakkola. Algorithmic stability and meta-learning.

Journal of Machine Learning Research, 2005.

[150] Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL:

Learning to learn in context. In North American Chapter of the Association for

Computational Linguistics, 2022.

[151] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Mat-

sukawa, and Hassan Ghasemzadeh. Improved knowledge distillation via teacher

assistant. In AAAI Conference on Artificial Intelligence, 2020.

[152] Rishabh Misra. News category dataset. Preprint arXiv:2209.11429, 2022.

[153] MosaicML. Introducing MPT-7B: A new standard for open-source, commercially

usable llms. Techical report, 2023.

[154] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In International Conference

on Machine Learning, 2017.

127

[155] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and Adam Trischler. Rapid

adaptation with conditionally shifted neurons. In International conference on ma-

chine learning, 2018.

[156] Aviv Navon, Aviv Shamsian, Ethan Fetaya, and Gal Chechik. Learning the pareto

front with hypernetworks. In International Conference on Learning Representations,

2021.

[157] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning

algorithms. Preprint arXiv:1803.02999, 2018.

[158] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,

Silvio Savarese, and Caiming Xiong. CodeGen: An open large language model

for code with multi-turn program synthesis. In International Conference on Learning

Representations, 2022.

[159] Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, and Se-Young Yun. BOIL: Towards

representation change for few-shot learning. In International Conference on Learning

Representations, 2021.

[160] Sora Ohashi, Junya Takayama, Tomoyuki Kajiwara, and Yuki Arase. Distinct label

representations for few-shot text classification. In Annual Meeting of the Association

for Computational Linguistics, 2021.

[161] OpenAI. GPT-3.5. Technical Report, 2022.

[162] OpenAI. Introducing ChatGPT. Technical Report, 2022.

[163] OpenAI. GPT-4. Technical Report, 2023.

[164] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. TADAM: Task

dependent adaptive metric for improved few-shot learning. In Neural Information

Processing Systems, 2018.

[165] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schul-

man, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell,

Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training language

models to follow instructions with human feedback. In Neural Information Process-

ing Systems, 2022.

128

[166] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on Knowledge and Data Engineering, 2009.

[167] Eunbyung Park and Junier B Oliva. Meta-Curvature. In Neural Information

Processing Systems, 2019.

[168] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge

distillation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019.

[169] Massimiliano Patacchiola, Jack Turner, Elliot J Crowley, Michael O’Boyle, and

Amos J Storkey. Bayesian meta-learning for the few-shot setting via deep kernels.

In Neural Information Processing Systems, 2020.

[170] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able

to solve simple math word problems? In Conference of the North American Chapter

of the Association for Computational Linguistics, 2021.

[171] Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut,

Robert West, and Boi Faltings. REFINER: Reasoning feedback on intermedi-

ate representations. In Conference of the European Chapter of the Association for

Computational Linguistics, 2024.

[172] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru,

Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,

and Julien Launay. The RefinedWeb dataset for Falcon LLM: outperforming

curated corpora with web data, and web data only. Preprint arXiv:2306.01116,

2023.

[173] Anastasia Pentina and Christoph Lampert. A PAC-Bayesian bound for lifelong

learning. In International Conference on Machine Learning, 2014.

[174] Anastasia Pentina and Christoph H Lampert. Lifelong learning with non-iid tasks.

In Neural Information Processing Systems, 2015.

[175] Juan-Manuel Perez-Rua, Xiatian Zhu, Timothy M Hospedales, and Tao Xiang.

Incremental few-shot object detection. In IEEE Conference on Computer Vision and

Pattern Recognition, 2020.

129

[176] Philip Pettit and Robert Sugden. The backward induction paradox. The Journal of

Philosophy, 1989.

[177] Silviu Pitis, Michael R Zhang, Andrew Wang, and Jimmy Ba. Boosted prompt

ensembles for large language models. Preprint arXiv:2304.05970, 2023.

[178] Gabriel Poesia and Noah D Goodman. Peano: learning formal mathematical

reasoning. Philosophical Transactions of the Royal Society A, 2023.

[179] Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal

Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 1963.

[180] Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free,

edit-based instruction search for prompting large language models. Preprint

arXiv:2203.07281, 2022.

[181] Ariadna Quattoni, Michael Collins, and Trevor Darrell. Transfer learning for

image classification with sparse prototype representations. In IEEE Conference on

Computer Vision and Pattern Recognition, 2008.

[182] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. Technical

Report, 2019.

[183] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. Language models are unsupervised multitask learners. Openai

blog, 2019.

[184] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits

of transfer learning with a unified text-to-text transformer. Journal of Machine

Learning Research, 2020.

[185] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits

of transfer learning with a unified text-to-text transformer. Journal of Machine

Learning Research, 2020.

130

[186] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learn-

ing or feature reuse? Towards understanding the effectiveness of MAML. In

International Conference on Learning Representations, 2020.

[187] Janarthanan Rajendran, Alexander Irpan, and Eric Jang. Meta-learning requires

meta-augmentation. In Neural Information Processing Systems, 2020.

[188] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-

learning with implicit gradients. In Neural Information Processing Systems, 2019.

[189] Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen.

Efficient off-policy meta-reinforcement learning via probabilistic context variables.

In International Conference on Machine Learning, 2019.

[190] Tiago Ramalho and Marta Garnelo. Adaptive posterior learning: few-shot learn-

ing with a surprise-based memory module. In International Conference on Learning

Representations, 2019.

[191] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning.

In International Conference on Learning Representations, 2017.

[192] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola.

Stochastic variance reduction for nonconvex optimization. In International Confer-

ence on Machine Learning, 2016.

[193] Scott Reed, Yutian Chen, Thomas Paine, Aäron van den Oord, SM Ali Eslami,

Danilo Rezende, Oriol Vinyals, and Nando de Freitas. Few-shot autoregressive

density estimation: Towards learning to learn distributions. In International

Conference on Learning Representations, 2018.

[194] Tim Rocktäschel and Sebastian Riedel. Learning knowledge base inference with

neural theorem provers. In Workshop on Automated Knowledge Base Construction,

2016.

[195] Jonas Rothfuss, Vincent Fortuin, Martin Josifoski, and Andreas Krause. PACOH:

Bayes-optimal meta-learning with pac-guarantees. In International Conference on

Machine Learning, 2021.

[196] Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Confer-

ence on Empirical Methods in Natural Language Processing, 2015.

131

[197] Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts

for in-context learning. In North American Chapter of the Association for Computa-

tional Linguistics, 2022.

[198] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, 1976.

[199] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-

der C. Berg, and Li Fei-Fei. ImageNet large scale visual recognition challenge.

International Journal of Computer Vision, 2015.

[200] Staurt J Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, 1995.

[201] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pas-

canu, Simon Osindero, and Raia Hadsell. Meta-learning with latent embedding

optimization. In International Conference on Learning Representations, 2019.

[202] Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid

Alyafeai, Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari,

Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon

Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike

Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit

Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht

Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le

Scao, Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask

prompted training enables zero-shot task generalization. In International Conference

on Learning Representations, 2022.

[203] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Tim-

othy Lillicrap. Meta-learning with memory-augmented neural networks. In

International Conference on Machine Learning, 2016.

[204] Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text

classification and natural language inference. In European Chapter of the Association

for Computational Linguistics, 2021.

[205] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer

theorem. In International Conference on Computational Learning Theory, 2001.

132

[206] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. Preprint arXiv:1707.06347, 2017.

[207] Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and Byron Boots. One-shot

learning for semantic segmentation. Preprint arXiv:1709.03410, 2017.

[208] Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu

Chen. Synthetic prompting: Generating chain-of-thought demonstrations for

large language models. In International Conference on Machine Learning, 2023.

[209] Peng Shen, Xugang Lu, Sheng Li, and Hisashi Kawai. Feature representation of

short utterances based on knowledge distillation for spoken language identifica-

tion. In Conference of the International Speech Communication Association, 2018.

[210] Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng.

Partial is better than all: Revisiting fine-tuning strategy for few-shot learning. In

AAAI Conference on Artificial Intelligence, 2021.

[211] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh.

AutoPrompt: Eliciting knowledge from language models with automatically

generated prompts. In Empirical Methods in Natural Language Processing, 2020.

[212] Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik

Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal rein-

forcement learning. In Neural Information Processing Systems, 2023.

[213] Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reason-

ing capabilities into smaller language models. In Findings of the Association for

Computational Linguistics, 2023.

[214] K Simonyan and A Zisserman. Very deep convolutional networks for large-scale

image recognition. In International Conference on Learning Representations, 2015.

[215] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah Snavely, and Gordon Wet-

zstein. MetaSDF: Meta-learning signed distance functions. In Neural Information

Processing Systems, 2020.

[216] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot

learning. In Neural Information Processing Systems, 2017.

133

[217] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MPNet: Masked

and permuted pre-training for language understanding. In Neural Information

Processing Systems, 2020.

[218] Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, and

Xipeng Qiu. BBTv2: Towards a gradient-free future with large language models.

In Empirical Methods in Natural Language Processing, 2022.

[219] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M

Hospedales. Learning to compare: Relation network for few-shot learning. In

IEEE Conference on Computer Vision and Pattern Recognition, 2018.

[220] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Common-

senseQA: A question answering challenge targeting commonsense knowledge.

In Conference of the North American Chapter of the Association for Computational

Linguistics, 2019.

[221] Swee Chuan Tan and Jess Pei San Lau. Time series clustering: A superior alterna-

tive for market basket analysis. In International Conference on Advanced Data and

Information Engineering, 2014.

[222] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Car-

los Guestrin, Percy Liang, and Tatsunori B Hashimoto. Stanford Alpaca: An

instruction-following LLaMA model. Techical report, 2023.

[223] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview.

In Learning to learn. 1998.

[224] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip

Isola. What makes for good views for contrastive learning? In Neural Information

Processing Systems, 2020.

[225] Michalis K Titsias, Francisco JR Ruiz, Sotirios Nikoloutsopoulos, and Alexandre

Galashov. Information theoretic meta learning with gaussian processes. In

Uncertainty in Artificial Intelligence, 2021.

[226] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume

134

Lample. LLaMA: Open and efficient foundation language models. Preprint

arXiv:2302.13971, 2023.

[227] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-

rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia

Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,

Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel

Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut

Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,

Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,

Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,

Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross

Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,

Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-

driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. LLaMA 2: Open

foundation and fine-tuned chat models. Preprint arXiv:2307.09288, 2023.

[228] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci,

Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Man-

zagol, and Hugo Larochelle. Meta-Dataset: A dataset of datasets for learning to

learn from few examples. In International Conference on Learning Representations,

2020.

[229] Nilesh Tripuraneni, Chi Jin, and Michael Jordan. Provable meta-learning of linear

representations. In International Conference on Machine Learning, 2021.

[230] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Neural Information Processing Systems, 2017.

[231] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, and Daan Wierstra. Matching

networks for one shot learning. In Neural Information Processing Systems, 2016.

[232] Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. SPoT: Better

frozen model adaptation through soft prompt transfer. In Annual Meeting of the

Association for Computational Linguistics, 2022.

135

[233] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 billion parameter autoregressive

language model. Technical report, 2021.

[234] Haoxiang Wang, Ruoyu Sun, and Bo Li. Global convergence and induced kernels

of gradient-based meta-learning with neural nets. Preprint arXiv:2006.14606,

2020.

[235] Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. On the global opti-

mality of model-agnostic meta-learning. In International Conference on Machine

Learning, 2020.

[236] Mingzhe Wang and Jia Deng. Learning to prove theorems by learning to generate

theorems. In Neural Information Processing Systems, 2020.

[237] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of

thought reasoning in language models. In International Conference on Learning

Representations, 2023.

[238] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. Generalizing

from a few examples: A survey on few-shot learning. ACM Computing Surveys,

2020.

[239] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Meta-learning to detect

rare objects. In IEEE International Conference on Computer Vision, 2019.

[240] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-

Yu Lee, Xiaoqi Ren, Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister.

DualPrompt: Complementary prompting for rehearsal-free continual learning. In

European Conference on Computer Vision, 2022.

[241] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren,

Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for

continual learning. In IEEE Conference on Computer Vision and Pattern Recognition,

2022.

[242] Robert WM Wedderburn. Quasi-likelihood functions, generalized linear models,

and the gauss—newton method. Biometrika, 1974.

136

[243] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia,

Ed H. Chi, Quoc V Le, and Denny Zhou. Chain of thought prompting elicits

reasoning in large language models. In Neural Information Processing Systems, 2022.

[244] Yanbin Wei, Shuai Fu, Weisen Jiang, James Kwok, and Yu Zhang. Rendering

graphs for graph reasoning in multimodal large language models. Preprint

arXiv:2402.02130, 2024.

[245] Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel

Khashabi, and Yejin Choi. Generating sequences by learning to Self-Correct. In

International Conference on Learning Representations, 2023.

[246] Yixuan Weng, Minjun Zhu, Shizhu He, Kang Liu, and Jun Zhao. Large language

models are reasoners with self-verification. In Conference on Empirical Methods in

Natural Language Processing, 2023.

[247] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep

kernel learning. In International Conference on Artificial Intelligence and Statistics,

2016.

[248] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie

Brew. Huggingface’s transformers: State-of-the-art natural language processing.

In Conference on Empirical Methods in Natural Language Processing, 2020.

[249] Zhenyu Wu, YaoXiang Wang, Jiacheng Ye, Jiangtao Feng, Jingjing Xu, Yu Qiao,

and Zhiyong Wu. OpenICL: An open-source framework for in-context learning.

In Annual Meeting of the Association for Computational Linguistics, 2023.

[250] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond Pascal: A benchmark

for 3D object detection in the wild. In IEEE Winter Conference on Applications of

Computer Vision, 2014.

[251] Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang.

One-shot relational learning for knowledge graphs. In Empirical Methods in Natural

Language Processing, 2018.

[252] Benfeng Xu, Quan Wang, Zhendong Mao, Yajuan Lyu, Qiaoqiao She, and Yong-

dong Zhang. KNN Prompting: Beyond-context learning with calibration-free

137

nearest neighbor inference. In The Eleventh International Conference on Learning

Representations, 2023.

[253] Xiaohan Xu, Chongyang Tao, Tao Shen, Can Xu, Hongbo Xu, Guodong Long, and

Jian-guang Lou. Re-Reading improves reasoning in language models. Preprint

arXiv:2309.06275, 2023.

[254] Tianci Xue, Ziqi Wang, Zhenhailong Wang, Chi Han, Pengfei Yu, and Heng Ji.

RCoT: Detecting and rectifying factual inconsistency in reasoning by reversing

chain-of-thought. Preprint arXiv:2305.11499, 2023.

[255] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xiaodan Liang, and Liang

Lin. Meta R-CNN: Towards general solver for instance-level low-shot learning.

In IEEE International Conference on Computer Vision, 2019.

[256] Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin,

Chenxu Lv, Da Pan, Dian Wang, Dong Yan, Fan Yang, Fei Deng, Feng Wang,

Feng Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao, Hang Xu, Haoze Sun,

Hongda Zhang, Hui Liu, Jiaming Ji, Jian Xie, JunTao Dai, Kun Fang, Lei Su, Liang

Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang Wang, Mickel Liu, MingAn Lin,

Nuolan Nie, Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li, Tianyu Li, Wei

Cheng, Weipeng Chen, Xiangrong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men,

Xin Yu, Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin Jiang, Yuchen

Gao, Yupeng Zhang, Zenan Zhou, and Zhiying Wu. Baichuan 2: Open large-scale

language models. Preprint arXiv:2309.10305, 2023.

[257] Qiang Yang, Yu Zhang, Wenyuan Dai, and Sinno Jialin Pan. Transfer Learning.

Cambridge University Press, 2020.

[258] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le. XLNet: Generalized autoregressive pretraining for language

understanding. In Neural Information Processing Systems, 2019.

[259] Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured

meta-learning. In International Conference on Machine Learning, 2019.

[260] Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin Ding, Ruirui Li, and

Zhenhui Li. Automated relational meta-learning. In International Conference on

Learning Representations, 2020.

138

[261] Huaxiu Yao, Ying-xin Wu, Maruan Al-Shedivat, and Eric Xing. Knowledge-aware

meta-learning for low-resource text classification. In Empirical Methods in Natural

Language Processing, 2021.

[262] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao,

and Karthik Narasimhan. Tree of Thoughts: Deliberate problem solving with

large language models. In Neural Information Processing Systems, 2023.

[263] Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compo-

sitional exemplars for in-context learning. In International Conference on Machine

Learning, 2023.

[264] Zhi-Xiu Ye and Zhen-Hua Ling. Multi-level matching and aggregation network

for few-shot relation classification. In Annual Meeting of the Association for Compu-

tational Linguistics, 2019.

[265] Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea

Finn. Meta-learning without memorization. In International Conference on Learning

Representations, 2020.

[266] Fei Yu, Hongbo Zhang, and Benyou Wang. Nature language reasoning, a survey.

Preprint arXiv:2303.14725, 2023.

[267] Longhui Yu*, Weisen Jiang*, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang,

James Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap

your own mathematical questions for large language models. In International

Conference on Learning Representations, 2024.

[268] Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Chuanqi Tan, and

Chang Zhou. Scaling relationship on learning mathematical reasoning with large

language models. Preprint arXiv:2308.01825, 2023.

[269] Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su,

and Wenhu Chen. MAmmoTH: Building math generalist models through hybrid

instruction tuning. In International Conference on Learning Representations, 2023.

[270] Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and Victor Lempitsky. Few-

shot adversarial learning of realistic neural talking head models. In IEEE/CVF

International Conference on Computer Vision, 2019.

139

[271] Matthew D Zeiler. AdaDelta: an adaptive learning rate method. Preprint

arXiv:1212.5701, 2012.

[272] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding,

Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,

Yufei Xue, Jidong Zhai, Wenguang Chen, Peng Zhang, Yuxiao Dong, and Jie Tang.

GLM-130B: An open bilingual pre-trained model. Preprint arXiv:2210.02414, 2022.

[273] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. DeepEMD: Few-shot

image classification with differentiable earth mover’s distance and structured

classifiers. In IEEE Conference on Computer Vision and Pattern Recognition, 2020.

[274] Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-Edit: Fault-aware code

editor for code generation. In Annual Meeting of the Association for Computational

Linguistics, 2023.

[275] Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan,

Fei Huang, and Huajun Chen. Differentiable prompt makes pre-trained lan-

guage models better few-shot learners. In International Conference on Learning

Representations, 2022.

[276] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on

Knowledge and Data Engineering, 2021.

[277] Yu Zhang and Dit-Yan Yeung. A convex formulation for learning task relation-

ships in multi-task learning. In Uncertainty in Artificial Intelligence, 2010.

[278] Yulong Zhang, Shuhao Chen, Weisen Jiang, Yu Zhang, Jiangang Lu, and James

Kwok. Domain-guided conditional diffusion model for unsupervised domain

adaptation. Preprint arXiv:2309.14360, 2023.

[279] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain

of thought prompting in large language models. In International Conference on

Learning Representations, 2023.

[280] Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex

Smola. Multimodal chain-of-thought reasoning in language models. In Interna-

tional Conference on Machine Learning, 2023.

140

[281] Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-

hint prompting improves reasoning in large language models. Preprint arXiv:

2304.09797, 2023.

[282] Wenliang Zhong and James Tin Yau Kwok. Convex multitask learning with

flexible task clusters. In International Conference on Machine Learning, 2012.

[283] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,

Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-

to-most prompting enables complex reasoning in large language models. In

International Conference on Learning Representations, 2023.

[284] Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan, and Jiashi Feng. Efficient

meta learning via minibatch proximal update. In Neural Information Processing

Systems, 2019.

[285] Pan Zhou, Yingtian Zou, X Yuan, Jiashi Feng, Caiming Xiong, and SC Hoi. Task

similarity aware meta learning: Theory-inspired improvement on MAML. In

Conference on Uncertainty in Artificial Intelligence, 2021.

[286] Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification

of neural networks with global sparsity constraint. In IEEE Conference on Computer

Vision and Pattern Recognition, 2021.

[287] Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in

deep reinforcement learning: A survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2023.

[288] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement

learning. In International Conference on Learning Representations, 2017.

141

	Title Page
	Authorization Page
	Signature Page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Notations
	Abstract
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Category of Meta-Learning Algorithms
	1.3 Applications of Meta-Learning
	1.3.1 Computer Vision Tasks
	1.3.2 Natural Language Processing Tasks

	1.4 Thesis Contributions and Organization

	Chapter 2 Background
	2.1 Formulation of Meta-Learning
	2.2 Representative Meta-Learning Algorithms
	2.2.1 MAML
	2.2.2 iMAML
	2.2.3 Prototypical Networks
	2.2.4 MetaOptNet

	2.3 Prompt Learning for Language Models
	2.3.1 Prompt Tuning
	2.3.2 MetaPrompting

	2.4 CoT Prompting for Mathematical Reasoning Tasks
	2.4.1 Chain-of-Thought Prompting
	2.4.2 Mathematical Reasoning

	Chapter 3 Meta-Regularization by Kernelized Proximal Regularization
	3.1 Introduction
	3.2 Meta-Initialization versus Meta-Regularization
	3.3 The Proposed MetaProx
	3.4 Theoretical Analysis
	3.5 Experiments on Few-shot Regression
	3.6 Experiments on Few-shot Classification
	3.7 Conclusion

	Chapter 4 Subspace Meta-Learning
	4.1 Introduction
	4.2 Learning Multiple Subspaces for Meta-Learning
	4.2.1 Linear Regression Tasks
	4.2.2 The Proposed MUSML

	4.3 Theoretical Analysis
	4.4 Experiments on Few-shot Regression
	4.4.1 Synthetic Data
	4.4.2 Pose Data

	4.5 Experiments on Few-shot Classification
	4.5.1 Experimental Setup
	4.5.2 Meta-Dataset-BTAF
	4.5.3 Meta-Dataset-ABF and Meta-Dataset-CIO
	4.5.4 Cross-Domain Few-Shot Classification
	4.5.5 Effects of K and m
	4.5.6 Effects of Temperature Scaling Schedule
	4.5.7 Improving Existing Meta-Learning Approaches

	4.6 Conclusion

	Chapter 5 Structured Prompting by Meta-Learning
	5.1 Introduction
	5.2 The Proposed MetaPrompter
	5.2.1 Representative Verbalizer
	5.2.2 Meta Structured-Prompting

	5.3 Experiments
	5.3.1 Setup
	5.3.2 Evaluation on RepVerb
	5.3.3 Evaluation on MetaPrompter
	5.3.4 Visualization

	5.4 Conclusion

	Chapter 6 Forward-Backward Reasoning in LLMs for Mathematical Verification
	6.1 Introduction
	6.2 Forward-Backward Reasoning for Verification
	6.2.1 Forward Reasoning
	6.2.2 Backward Reasoning
	6.2.3 FOBAR (FOrward and BAckward Reasoning)
	6.2.4 Extension to Non-Mathematical Reasoning Tasks

	6.3 Experiments on Mathematical Tasks
	6.3.1 Setup
	6.3.2 Main Results
	6.3.3 Combining Forward and Backward Probabilities
	6.3.4 Usefulness of Forward and Backward Reasoning
	6.3.5 Number of Forward and Backward Reasoning Chains

	6.4 Analysis on Forward/Backward Reasoning
	6.4.1 Saturated Performance of Self-Consistency
	6.4.2 Correct Candidate Helps Backward Reasoning

	6.5 Experiments on Non-Mathematical Tasks
	6.6 Conclusion

	Chapter 7 MetaMathQA: Bootstrap Math Questions for LLMs
	7.1 Introduction
	7.2 The Proposed MetaMathQA
	7.2.1 Answer Augmentation
	7.2.2 Question Bootstrapping by LLM Rephrasing
	7.2.3 Question Bootstrapping by Backward Reasoning
	7.2.4 Finetuning the LLMs

	7.3 Experiments
	7.3.1 Proposed MetaMathQA Dataset
	7.3.2 Usefulness of MetaMathQA

	7.4 Conclusion

	Chapter 8 Conclusion & Future Works
	8.1 Conclusion
	8.2 Future Works

	Appendix
	References

