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A B S T R A C T

Limited transferability hinders the performance of a well-trained deep learning model when applied to new
application scenarios. Recently, Unsupervised Domain Adaptation (UDA) has achieved significant progress
in addressing this issue via learning domain-invariant features. However, the performance of existing UDA
methods is constrained by the possibly large domain shift and limited target domain data. To alleviate these
issues, we propose a Domain-guided Conditional Diffusion Model (DCDM), which generates high-fidelity target
domain samples, making the transfer from source domain to target domain easier. DCDM introduces class
information to control labels of the generated samples, and a domain classifier to guide the generated samples
towards the target domain. Extensive experiments on various benchmarks demonstrate that DCDM brings a
large performance improvement to UDA.
1. Introduction

Deep neural networks have achieved remarkable advances in a
variety of applications due to their powerful representation learning
capabilities (Li et al., 2024; Villaizán-Vallelado, Salvatori, Carro, &
Sanchez-Esguevillas, 2024; Wang, 2024; Zhang et al., 2022; Zhang &
Yang, 2022). However, when domain shift occurs, a model trained
from a source domain may suffer noticeable performance degradation
in the target domain Oza, Sindagi, Sharmini, and Patel (2023), Pan and
Yang (2009). To handle this issue, Unsupervised Domain Adaptation
(UDA) (Fang, Yap, Lin, Zhu, & Liu, 2024; Gu, Sun, & Xu, 2022; Yang,
Zhang, Dai, & Pan, 2020; Zhang, Yao, Chen, Jin, Jin, & Jiangang,
2024; Zhao et al., 2022) is proposed to learn knowledge from the
source domain as well as unlabeled target domain, and then transfer
the knowledge to help learn from the target domain.

To alleviate domain shift, many UDA methods (Dhaini, Berar,
Honeine, & Van Exem, 2023; Li, Lu, Zuo, & Zhang, 2022; Long, Cao,
Wang, & Jordan, 2015; Rangwani, Aithal, Mishra, Jain, & Radhakrish-
nan, 2022; Wang et al., 2023) are proposed to learn domain-invariant
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features explicitly or implicitly. Specifically, Long et al. (2015), Zhang,
Liu, Long, and Jordan (2019), and Zhu et al. (2021) explicitly minimize
the distribution discrepancy between the source and target domains.
On the other hand, adversarial-based UDA methods enhance transfer
learning capabilities by confusing the source and target domain fea-
tures (Chen, Wu, Duan, & Gao, 2022; Rangwani et al., 2022; Zhang
et al., 2023) or generating auxiliary samples to bridge the source
and target domains (Hoffman et al., 2018; Liu et al., 2024; Yang,
Xia, Ding & Ding, 2020). However, the performance of existing UDA
methods is constrained by the unlabeled target domain. When there
is a large domain shift across domains, it further poses challenges to
the UDA methods. Moreover, when the target domain samples are
limited,3 it is difficult for UDA methods to accurately model the target
domain’s data distribution. As a result, direct domain alignment be-
tween the source samples and limited target domain samples can cause
sub-optimal transfer effects. Different from existing mainstream UDA
methods (including discrepancy-based and adversarial-based methods)
that focus on aligning the distributions between the source and target
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Neural Networks 184 (2025) 107031 
domains, augmentation-based UDA methods generate more data for
raining, which is beneficial to UDA methods (Na, Jung, Chang, &

Hwang, 2021; Pan & Yang, 2009; Shorten & Khoshgoftaar, 2019). For
xample, Chen et al. (2023) and Gao, Chu, Wang, and Stankovic (2022)
enerate source/intermediate domain images, while Hoffman et al.

(2018) and Yang, Xia, et al. (2020) employ image-to-image translation
to bridge the source and target domains. However, the above methods
cannot generate samples conditioned on labels, making it difficult to
model the target domain distribution. Moreover, as demonstrated in
Appendix, we find that incorporating labeled target samples into the
ource domain can reduce the generalization error bound on the target
omain.

To achieve that, in this paper, we propose the Domain-guided Con-
ditional Diffusion Model (DCDM) to generate ‘‘labeled’’ target domain
samples for UDA methods. Using the Diffusion Probabilistic Models
(DPM) (Cao et al., 2024; Dhariwal & Nichol, 2021; Ho, Jain, & Abbeel,
2020) (or simply diffusion models), DCDM can control the class and
omain of each generated sample. Specifically, to control the class of
ach generated sample, we inject label information into the adaptive

group normalization (AdaGN) layers (Dhariwal & Nichol, 2021). For
the source domain samples, we simply use their ground truth labels,

hile for the unlabeled target domain samples, we use pseudo-labels as
redicted by a pretrained UDA model. To control the domain of each
enerated sample, we train a domain classifier to guide the diffusion
ampling process towards the target domain in the generation. The
enerated target domain samples are then combined with the source

domain samples as an augmented source domain, which is closer to
the target domain than the original source domain, making it easier
for UDA methods to perform transfer learning. Finally, we train a UDA

odel to transfer from the augmented source domain to the target
omain.

The proposed DCDM is very flexible and can be used with any ex-
isting UDA method. We analyze theoretically its generalization bound.
Empirically, extensive experiments on various UDA benchmarks demon-
strate the superiority of DCDM.

The contributions of this paper are four-fold.

(1) We manage to control domain and class generation through
domain guidance and class condition, respectively, and propose
a novel DCDM framework that generates high-fidelity samples
for the unlabeled target domain. To the best of our knowledge,
this is the first application of DPMs for UDA.

(2) DCDM can be used with any existing UDA method. Specifically,
in our experiments, we combine DCDM with MCC (Jin, Wang,
Long, & Wang, 2020), ELS (Zhang et al., 2023), and SSRT (Sun,
Lu, Zhang, & Ling, 2022) to achieve state-of-the-art performance
on various benchmark datasets.

(3) Theoretically, we establish a generalization bound of DCDM.
(4) Empirically, we perform extensive experiments on UDA bench-

mark datasets to demonstrate the effectiveness of DCDM. Results
show that the generated samples are similar to the target domain
samples, and the augmented source domain can help reduce
domain shift.

The rest of this paper is organized as follows. Section 2 reviews
related studies. Section 3 details the proposed DCDM framework and
stablishes a generalization bound for DCDM. Section 4 shows experi-

mental results on UDA benchmarks, and finally Section 5 concludes the
paper.

2. Related work

2.1. Unsupervised Domain Adaptation

UDA methods (Ganin et al., 2016; Liu et al., 2023; Zhao et al.,
2022; Zhuang, Zhang, & Wei, 2024) extract knowledge from the la-
eled source domain to facilitate learning in the unlabeled target
2 
domain. As the data distribution of the target domain differs from
that of the source domain, various methods have been proposed to
reduce domain discrepancy. They can mainly be classified into three
categories: discrepancy-based methods, adversarial-based methods, and
augmentation-based methods.

Discrepancy-based methods learn a feature extractor to minimize
he distribution discrepancy between the source and target domains.
or example, DAN (Long et al., 2015) minimizes the maximum mean

discrepancy (MMD) (Gretton, Borgwardt, Rasch, Schölkopf, & Smola,
2012) between domains, while deep subdomain adaptation network
(DSAN) (Zhu et al., 2021) considers the relationship between two
subdomains within the same class but across different domains. Margin
disparity discrepancy (MDD) (Zhang et al., 2019) performs domain
alignment with generalization error analysis. Adaptive feature norm
AFN) (Xu, Li, Yang, & Lin, 2019) progressively adapts the feature

norms of the source and target domains to improve transfer per-
formance. Unlike the above methods that explicitly align domains,
minimum class confusion (MCC) (Jin et al., 2020) introduces a general
class confusion loss as a regularizer.

Adversarial-based methods align the source and target distributions
through adversarial training (Goodfellow, Shlens, & Szegedy, 2015).
or example, domain adversarial neural network (DANN) (Ganin et al.,

2016) learns a domain discriminator to distinguish samples in the
two domains, and uses a feature generator to confuse the domain
discriminator. Conditional domain adversarial network (CDAN) (Long,

ao, Wang, & Jordan, 2018) injects class-specific information into
the discriminator to facilitate alignment of the multi-modal distribu-
tions. Smooth domain adversarial training (SDAT) (Rangwani et al.,
2022) employs sharpness-aware minimization (Foret, Kleiner, Mobahi,
 Neyshabur, 2021) to seek a flat minimum for better generalization.

Environment label smoothing (ELS) (Zhang et al., 2023) alleviates the
ffect of label noise by encouraging the domain discriminator to output

soft domain labels. Sun et al. (2022) introduce a Vision Transformer
(ViT) (Dosovitskiy, 2020) backbone and a safe self-refinement strategy
to enhance model performance while mitigating the risk of collapse in

DA. Transferable vision transformer (TVT) (Yang, Liu, Xu & Huang,
2023) leverages ViT for UDA by injecting learned transferabilities into
the attention blocks. Huang, Song, and Zhang (2024) propose gradient
harmonization techniques to resolve optimization conflicts between do-
main alignment and classification by adjusting gradient angles. Litrico,
Del Bue, and Morerio (2023) refine pseudo-labels through uncertainty
estimation and knowledge aggregation from neighboring samples to
improve performance in source-free UDA.

Augmentation-based methods bridge the source and target domains
by data augmentation. For instance, cycle-consistent adversarial do-
main adaptation (CyCADA) (Hoffman et al., 2018) uses the generative
adversarial network (GAN) for image-to-image translation via the cycle
consistency loss and semantic consistency loss. Bi-directional genera-
tion (BDG) (Yang, Xia, et al., 2020) uses two cross-domain generators
to synthesize data of each domain conditioned on the other, and learns
two task-specific classifiers. Adapt anything (Chen et al., 2023) is a
task-agnostic method that leverages the prior knowledge of Stable
Diffusion (Rombach, Blattmann, Lorenz, Esser, & Ommer, 2022) to
synthesize surrogate source data. While this method avoids the need to
fine-tune the diffusion model, it relies heavily on the prior knowledge
f the pre-trained model for specific domains and categories. Unlike ex-
sting augmentation-based methods that generate source/intermediate
omain images (Chen et al., 2023; Gao et al., 2022) or employ image-
o-image translation (Hoffman et al., 2018; Yang, Xia, et al., 2020),
he proposed method generates ‘‘labeled’’ target domain samples for

the unlabeled target domain, which is challenging. Those ‘‘labeled’’
samples can bring extra supervised signals for training the UDA model.
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Fig. 1. An overview of the Domain-guided Conditional Diffusion Model (DCDM). In label-conditioned training, a conditional diffusion model 𝝐𝜽 is trained on the source domain
samples (with ground-truth labels) and target domain samples (with pseudo-labels predicted by the pretrained classifier 𝑓⋆). 𝝐⋆𝜽 denotes the optimized 𝝐𝜽. A domain classifier 𝝓
is trained to discriminate samples from the source and target domains. In domain-guided generation, the generated target domain data 𝑔 are sampled from the trained 𝝐⋆𝜽 with
guidance provided by the domain classifier 𝝓⋆. Finally, a UDA model 𝑓 is trained to transfer from the augmented source domain �̂� = 𝑠 ∪𝑔 to the target domain 𝜏 .
2.2. Diffusion probabilistic model (DPM)

In recent years, the DPM (Sohl-Dickstein, Weiss, Maheswaranathan,
& Ganguli, 2015) has achieved great success in various generative
tasks (Wang, Wu, Yuan, Tong, & Xu, 2024; Ye & Liu, 2024). It includes
a forward diffusion process that converts an original sample 𝐱0 to a
Gaussian noise, and a reverse denoising process that infers the Gaussian
noise back to a sample. Specifically, the forward process gradually
injects noise to 𝐱0 until it becomes a random noise 𝐱𝑇 , via the sampling:
𝑞
(

𝐱𝑡|𝐱𝑡−1
)

= 
(

√

𝛼𝑡𝐱𝑡−1, (1 − 𝛼𝑡)𝐈
)

, where  (𝝁,𝜮) is the multivariate
normal distribution with mean 𝝁 and covariance 𝜮, and 𝛼𝑡’s follow a
decreasing schedule. On the other hand, the reverse process denoises
𝐱𝑇 to 𝐱0 using a decoder 𝑝𝜽

(

𝐱𝑡−1|𝐱𝑡
)

. Specifically, a model 𝝐𝜽
(

𝐱𝑡, 𝑡
)

,
parameterized by 𝜽, is trained to predict the noise injected in the
forward process by minimizing an approximate loss

E𝑡∼ (1,𝑇 ),𝐱0 ,𝝐∼ (𝟎,𝐈)𝜔𝑡
‖

‖

‖

𝝐 − 𝝐𝜽
(

𝐱𝑡, 𝑡
)

‖

‖

‖

2
, (1)

where  (1, 𝑇 ) is the uniform distribution on {1,… , 𝑇 }, 𝜔𝑡 = (1 −
𝛼𝑡)2∕2𝜎2𝑡 𝛼𝑡

(

1 − �̄�𝑡
)

with �̄�𝑡 =
∏𝑡

𝑠=0 𝛼𝑠, 𝜎𝑡 = 1−�̄�𝑡−1
1−�̄�𝑡

(1 − 𝛼𝑡), and 𝐱𝑡 =
√

�̄�𝑡𝐱0 +
√

1 − �̄�𝑡𝝐. During inference, the learned model 𝝐𝜽
(

𝐱𝑡, 𝑡
)

gener-
ates a sample 𝐱0 by gradually denoising the random noise 𝐱𝑇 ∼  (𝟎, 𝐈)

according to 𝐱𝑡−1 =
1

√

𝛼𝑡

(

𝐱𝑡 −
1−𝛼𝑡
√

1−�̄�𝑡
ϵ𝜽

(

𝐱𝑡, 𝑡
)

)

+𝜎𝑡𝐳 , where 𝐳 ∼  (𝟎, 𝐈).
The DPM suffers from slow sampling, as thousands of denoising steps
are usually required to generate samples (Ho et al., 2020; Yang et al.,
2023). To improve efficiency, the denoising diffusion implicit model
(DDIM) (Song, Meng, & Ermon, 2021) uses a non-Markov diffusion
process to achieve 10× faster sampling. DPM-Solver (Lu, Zhou, Bao,
Chen, Li, & Zhu, 2022) formulates DPM as diffusion ordinary differen-
tial equations and reduces the number of denoising steps from 1000
to about 10. DPM-Solver++ (Lu et al., 2023) further improves the
robustness of classifier guidance in DPM-Solver by using a high-order
solver.

The DPM is unable to control the class labels of generated sam-
ples. To handle this issue, conditional diffusion probabilistic model
(CDPM) (Nichol & Dhariwal, 2021) incorporates label information
into the model by adding a label embedding to the time embed-
ding. Dhariwal and Nichol (2021) further improve the CDPM by em-
bedding a condition (i.e., class label) into the AdaGN layers (Dhariwal
& Nichol, 2021) of the UNet (Ronneberger, Fischer, & Brox, 2015).
3 
Moreover, classifier guidance (Dhariwal & Nichol, 2021) is also intro-
duced, and the denoising process of class 𝑐 is modified as �̃�𝜽(𝐱𝑡, 𝑡, 𝑐) =
𝝐𝜽(𝐱𝑡, 𝑡, 𝑐) −𝑠𝜎𝑡∇𝐱𝑡 log 𝑝𝝓(𝑐|𝐱𝑡, 𝑡), where 𝝓 is a learned classifier and 𝑠 is a
scale factor. Diffusion models can learn complex data distributions from
limited samples (Dhariwal & Nichol, 2021) and generate samples. To
this end, this paper proposes DCDM to learn the distribution of labeled
target samples by domain guidance and class condition.

3. Domain-guided conditional diffusion model

In UDA, we are given a labeled source domain 𝑠 = {(𝐱𝑠, 𝑦𝑠)} and
an unlabeled target domain 𝜏 = {𝐱𝜏}. Let 𝑁𝑠 = |𝑠| and 𝑁𝜏 = |𝜏 | be
the number of samples in 𝑠 and 𝜏 , respectively. Usually, 𝑁𝜏 is much
smaller than 𝑁𝑠 (Yang, Zhang, Dai, & Pan, 2020). UDA aims to train
a model from 𝑠 ∪ 𝜏 , and then uses this model to make predictions
on 𝜏 . However, the target domain has limited samples, which are also
unlabeled, making transfer more difficult.

Previous augmentation-based methods adopt the image-to-image
translation strategy (Hoffman et al., 2018) or construct intermediate
domains to bridge the source and target domains (Xia, Jing, & Ding,
2023; Yang, Xia, et al., 2020), rather than generate labeled samples in
the target domain. Therefore, these methods fail to address the data
scarcity problem of UDA. In this paper, we propose the Domain-guided
Conditional Diffusion Model (DCDM), which generates ‘‘labeled’’ target
domain samples. Moreover, unlike existing conditional GANs (Mirza &
Osindero, 2014; Odena, Olah, & Shlens, 2017) and variational autoen-
coders (VAEs) (Sohn, Lee, & Yan, 2015), the class label and domain
information are decoupled in DCDM to facilitate label information
sharing between the source and target domains. For each generated
sample, they are separately controlled by using the class condition
and domain guidance, respectively. As illustrated in Fig. 1, the DCDM
has two stages: label-conditioned training and domain-guided generation.
In label-conditioned training, we train a label-conditioned diffusion
model on the source and target domain samples to control the labels
of generated samples. In domain-guided generation, we first train a
domain classifier, which is then used in domain-guidance sampling to
generate samples for the target domain. Finally, the generated samples
are combined with the source samples as an augmented source domain
to train a UDA model. The augmented source domain can reduce
domain shifts, benefiting existing UDA methods.
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3.1. Label-conditioned training

To generate more target domain samples, a straightforward solution
is to train a DPM on the target domain. Analogous to (1), a noise
rediction model 𝝐𝜽

(

𝐱𝜏𝑡 , 𝑡
)

can be trained by minimizing the following
loss as

E𝑡∼ (1,𝑇 ),𝐱𝜏0∼ ,𝝐∼ (𝟎,𝐈)𝜔𝑡
‖

‖

‖

𝝐 − 𝝐𝜽
(

𝐱𝜏𝑡 , 𝑡
)

‖

‖

‖

2
. (2)

However, this cannot control the labels of the samples and cannot
ensure that the generated samples cover all classes.

To alleviate this problem, one can use the label embedding of 𝐱𝜏0
s condition 𝐜 and feed this to a CDPM (Nichol & Dhariwal, 2021)
𝜽
(

𝐱𝜏𝑡 , 𝑡, 𝐜
)

(Section 2.2). However, labels for the target domain samples
re not available. To address this issue, we first train a UDA model 𝑓⋆

y minimizing the commonly-used objective as

𝑓⋆ = arg min
𝑓

1
𝑁𝑠

∑

(𝐱,𝑦)∈𝑠

𝓁(𝑓 (𝐱), 𝑦) + 𝛽(𝑠,𝜏 ), (3)

where 𝓁(⋅, ⋅) is a supervised loss (e.g., cross-entropy loss for classifica-
ion problems), 𝛽 > 0 is a tradeoff parameter, and (⋅, ⋅) is a loss used

to bridge the source and target domains (e.g., domain discrepancy loss
in discrepancy-based methods Jin et al., 2020; Long et al., 2015; Zhang
t al., 2019, or domain discrimination loss in adversarial-based methods

Ganin et al., 2016; Rangwani et al., 2022; Zhang et al., 2023). We then
use 𝑓⋆’s predictions (denoted by �̂�) on the target domain samples as
heir pseudo-labels. The loss in problem (2) is consequently changed to
E𝑡∼ (1,𝑇 ),𝐱𝜏0∼ ,𝝐∼ (𝟎,𝐈)𝜔𝑡

‖

‖

‖

𝝐 − 𝝐𝜽
(

𝐱𝜏𝑡 , 𝑡, 𝑓⋆(𝐱𝜏0)
)

‖

‖

‖

2
. (4)

Using more training data is beneficial to DPM training. It can
also improve the fidelity of the generated samples (Croitoru, Hondru,
Ionescu, & Shah, 2023). Thus, instead of using only the target domain
amples to train 𝝐𝜽 as in problem (4), we use both the source and target
omain samples to minimize the following loss

E𝑡∼ (1,𝑇 ),𝝐∼ (𝟎,𝐈)𝜔𝑡
(

E(𝐱0 ,⋅)∼
‖

‖

‖

𝝐 − 𝝐𝜽
(

𝐱𝑡, 𝑡, 𝐜
)

‖

‖

‖

2
+ E𝐱0∼

‖

‖

‖

𝝐 − 𝝐𝜽
(

𝐱𝑡, 𝑡, 𝐜
)

‖

‖

‖

2)
,

(5)

where 𝐜 is the (true) label when 𝐱0 is from the source domain, and
the pseudo-label predicted by 𝑓⋆ when 𝐱0 is from the target domain.
The ground truth labels of source samples can reduce the noise brought
by pseudo-labels. The whole label-conditioned training procedure is
shown in Algorithm 1. After label-conditioned training, we obtain
he optimized diffusion model 𝝐⋆𝜽 and can generate images using this
odel. Specifically, to generate a sample 𝐱0 from class 𝑦, we gradually
enoise the random noise sample 𝐱𝑇 ∼  (𝟎, 𝐈) according to 𝐱𝑡−1 =
1

√

𝛼𝑡

(

𝐱𝑡 −
1−𝛼𝑡
√

1−�̄�𝑡
ϵ𝜽

(

𝐱𝑡, 𝑡, 𝑦
)

)

+ 𝜎𝑡𝐳, where 𝐳 ∼  (𝟎, 𝐈).

3.2. Domain-guided generation

While label-conditioned training can control the generated sample’s
class label, it does not control its domain. In UDA, as we focus on the
performance in the target domain, it is more crucial to generate samples
for the target domain.

To achieve this, inspired by classifier guidance (Dhariwal & Nichol,
2021), we adopt a domain classifier to guide the generation towards
the target domain. Specifically, we first train a domain classifier (with
parameter 𝝓) on the noisy images 𝐱𝑡’s by minimizing the following loss
as

𝝓⋆ = ar g min
𝝓

𝑇
∑

𝑡=1

∑

(𝐱0 ,⋅)∈𝑠

𝓁(𝝓(𝐱𝑠𝑡 , 𝑡), 𝑑𝑠) +
∑

𝐱0∈𝜏

𝓁(𝝓(𝐱𝜏𝑡 , 𝑡), 𝑑𝜏 ), (6)

where 𝐱𝑡 =
√

�̄�𝑡𝐱0 +
√

1 − �̄�𝑡𝝐, 𝓁(⋅, ⋅) is the cross-entropy loss, 𝑑𝑠 and 𝑑𝜏

re the ground-truth source and target domain labels of 𝐱0, respectively.
fter obtaining 𝝓⋆, the gradient ∇𝐱𝑡 log 𝑝𝝓⋆ (𝑑𝜏 |𝐱𝑡, 𝑡), where 𝑝𝝓⋆ (𝑑𝜏 |𝐱𝑡, 𝑡)

is the predicted domain probability, is used to guide the sampling
4 
Algorithm 1 Label-conditioned training.
Input: Source domain 𝑠, target domain 𝜏 , step size 𝛾, decreasing

sequence (𝛼1,… , 𝛼𝑇 ), mini-batch 𝐵;
1: Train a UDA model 𝑓⋆ on 𝑠 ∪𝜏 ;
2: repeat
3: Sample a mini-batch of images {𝐱0,i}𝐵𝑖=1 from 𝑠 ∪𝜏 ;
4: for 𝑖 = 1,… , 𝐵 do
5: if 𝐱0,𝑖 ∈ 𝜏 then
6: 𝐜𝑖 = 𝑓⋆(𝐱0,𝑖);
7: else
8: 𝐜𝑖 = 𝑦𝑖;
9: end if

10: end for
11: 𝑡 ∼  (1, 𝑇 );
12: 𝝐 ∼  (𝟎, 𝐈);
13: �̄�𝑡 =

∏𝑡
𝑗=1 𝛼𝑗 , 𝜎𝑡 =

1−�̄�𝑡−1
1−�̄�𝑡

(1 − 𝛼𝑡);

4: 𝐱𝑡,𝑖 =
√

�̄�𝑡𝐱0,𝑖 +
√

1 − �̄�𝑡𝝐; 𝑖 = 1,… , 𝐵;
15: 𝜔𝑡 =

(1−𝛼𝑡)2

2𝜎2𝑡 𝛼𝑡(1−�̄�𝑡)
;

16: mini-batch(𝜽) = 𝜔𝑡
𝐵
∑𝐵

𝑖=1
‖

‖

‖

𝝐 − 𝝐𝜽
(

𝐱𝑡,𝑖, 𝑡, 𝐜𝑖
)

‖

‖

‖

2
;

17: 𝜽 ← 𝜽 − 𝛾∇𝜽mini-batch(𝜽);
8: until converged.

19: return 𝜽⋆.

process towards the target domain. Then, the domain-guided noise
prediction model becomes

�̃�𝜽(𝐱𝑡, 𝑡, �̂�) = 𝝐𝜽⋆ (𝐱𝑡, 𝑡, 𝑦) − 𝑠
√

1 − �̄�𝑡 ∇𝐱𝑡 log 𝑝𝝓⋆ (𝑑𝜏 |𝐱𝑡, 𝑡), (7)

where 𝑠 is a scale factor, and �̂� = [𝑦, 𝑑𝜏 ] with 𝑦 being the class label of
images we aim to generate.

To accelerate the sampling procedure, we use DPM-Solver++ (Lu
et al., 2023) to generate samples 𝑔 for the target domain. Given
an initial noisy 𝐱𝑇 ∼  (𝟎, 𝐈) and time steps

{

𝑡𝑖
}𝑀
𝑖=0, this multi-step

econd-order solver iterates as

𝐱𝑡𝑖 =
√

𝛼𝑡𝑖
(

𝑒−𝑏𝑖 − 1)
(

𝑏𝑖
2𝑏𝑖−1

𝐱𝜽
(

𝐱𝑡𝑖−2 , 𝑡𝑖−2, �̂�
)

−
(

1 + 𝑏𝑖
2𝑏𝑖−1

)

𝐱𝜽
(

𝐱𝑡𝑖−1 , 𝑡𝑖−1, �̂�
)

)

+

√

1 − �̄�𝑡𝑖
√

1 − �̄�𝑡𝑖−1
𝐱𝑡𝑖−1 , (8)

for 𝑖 = 0,… , 𝑀 , where 𝐱𝜽(𝐱𝑡, 𝑡, �̂�) = 𝐱𝑡−
√

1−�̄�𝑡 �̃�𝜽(𝐱𝑡 ,𝑡,�̂�)
√

�̄�𝑡
, 𝜆𝑡 =

1
2 log

(

�̄�𝑡
1−�̄�𝑡

)

,
and 𝑏𝑖 = 𝜆𝑡𝑖 − 𝜆𝑡𝑖−1 . The whole domain-guided generation procedure is
shown in Algorithm 2.

To reduce the domain shift, we combine the samples 𝑔 generated
rom Algorithm 2 with the original source domain samples 𝑠 to

form an augmented source domain data �̂�. The effectiveness of this
combination will be verified in Section 4.4. A UDA model is then
sed to transfer from �̂� to the target domain 𝜏 by minimizing the
ollowing objective, which is analogous to that in (3):

𝑓 = ar g min
𝑓

1
𝑁�̂�

∑

(𝐱,𝑦)∈�̂�

𝓁(𝑓 (𝐱), 𝑦) + 𝛽(�̂�,𝜏 ), (9)

where 𝑁�̂� = |�̂�| = 𝑁𝑠 + 𝑁𝑔 denotes the number of samples in �̂�.
Finally, the learned 𝑓 is evaluated on the target samples.

The whole DCDM algorithm is shown in Algorithm 3. Note that
CDM can be integrated into any UDA method (i.e., step 1 in Algorithm

1 and step 9 in Algorithm 3). For the experiments in Section 4, DCDM
s combined with MCC (Jin et al., 2020), ELS (Zhang et al., 2023), and

SSRT (Sun et al., 2022).

3.3. Analysis

In this section, we provide analyses for the proposed DCDM method.
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Algorithm 2 Domain-guided generation.

Input: Initial 𝐱𝑇 , time steps {𝑡𝑖}𝑀𝑖=0, the optimized noise prediction
model 𝝐𝜽⋆ obtained from Algorithm 1, domain classifier model 𝝓⋆,
target domain label 𝑑𝜏 , and guidance scale 𝑠, decreasing sequence
𝛼1,… , 𝛼𝑇 ;

1: 𝐱𝑡0 = 𝐱𝑇 ∼  (𝟎, 𝐈);
2: Sample a class 𝑦;
3: �̂� = [𝑦, 𝑑𝜏 ];
4: for 𝑖 = 1,… , 𝑀 do
5: �̄�𝑡𝑖 =

∏𝑡𝑖
𝑗=1 𝛼𝑗 ;

6: 𝜆𝑡𝑖 =
1
2 log

(

�̄�𝑡𝑖
1−�̄�𝑡𝑖

)

;

7: 𝑏𝑖 = 𝜆𝑡𝑖 − 𝜆𝑡𝑖−1 ;
8: Compute guidance 𝐝𝑡𝑖 =

√

1 − �̄�𝑡𝑖∇𝐱𝑡𝑖
log 𝑝𝝓⋆ (𝑑|𝐱𝑡𝑖 , 𝑡𝑖);

9: �̃�𝜽(𝐱𝑡𝑖 , 𝑡𝑖, �̂�) = 𝝐𝜽⋆ (𝐱𝑡𝑖 , 𝑡𝑖, 𝑦) − 𝑠𝐝𝑡𝑖 ;
10: if 𝑖 = 1 then
11: 𝐱𝑡𝑖 =

√

1−�̄�𝑡𝑖
√

1−�̄�𝑡𝑖−1
𝐱𝑡𝑖−1+

√

�̄�𝑡𝑖 (1 −𝑒−𝑏𝑖 )
(

𝐱𝑡𝑖−1−
√

1−�̄�𝑡𝑖
√

�̄�𝑡𝑖
�̃�𝜽(𝐱𝑡𝑖−1 , 𝑡𝑖−1, �̂�)

)

;

2: else
3: Compute 𝐱𝑡𝑖 according to Eq. (8);
4: end if
5: end for
6: return (𝐱𝑡𝑀 , 𝑦).

Algorithm 3 UDA via Domain-guided Conditional Diffusion Model
(DCDM).
Input: Source domain 𝑠, target domain 𝜏 , number of generated

samples 𝑁𝑔 ;
1: Train a label-conditioned diffusion model 𝝐𝜽⋆ on 𝑠 ∪ 𝜏 by

Algorithm 1;
2: Train a domain classifier 𝝓⋆ on 𝑠 ∪𝜏 ;
3: 𝑔 = ∅;
4: for 𝑖 = 1,… , 𝑁𝑔 do
5: Generate (𝐱𝑖, 𝑦𝑖) with 𝝓⋆ by Algorithm 2;
6: 𝑔 = 𝑔 ∪ {(𝐱𝑖, 𝑦𝑖)};
7: end for
8: �̂� = 𝑔 ∪𝑠;
9: Train a UDA model 𝑓 on �̂� ∪𝜏 ;

10: Evaluate the learned 𝑓 on 𝜏 ;

3.3.1. Connection to score matching
The proposed DCDM learns the distribution of labeled target sam-

les by domain guidance and class condition. In the following, we
show how the domain guidance and class condition relate to the score
matching (Song, Durkan, Murray & Ermon, 2021), which formulates
iffusion models from a different perspective.

Let 𝑦 be the class label and 𝑑𝜏 be the target domain label. With
an assumption that 𝑦 and 𝑑𝜏 are independent, we can obtain the
distribution of the labeled target domain sample as

𝑝(𝐱 ∣ 𝑦, 𝑑𝜏 ) = 𝑝(𝐱)𝑝(𝑦, 𝑑𝜏 |𝐱)
𝑝(𝑦, 𝑑𝜏 ) =

𝑝(𝐱)𝑝(𝑦 ∣ 𝐱)𝑝(𝑑𝜏 ∣ 𝐱)
𝑝(𝑦)𝑝(𝑑𝜏 )

= 𝑝(𝐱 ∣ 𝑦)
𝑝(𝑑𝜏 ∣ 𝐱)
𝑝(𝑑𝜏 )

,

Thus, the score function can be represented as

∇𝐱 log 𝑝(𝐱 ∣ 𝑦, 𝑑𝜏 ) = ∇𝐱 log 𝑝(𝐱 ∣ 𝑦) + ∇𝐱 log 𝑝(𝑑𝜏 ∣ 𝐱).

In the proposed DCDM method, ∇𝐱 log 𝑝(𝐱 ∣ 𝑦) is learned by the
conditional diffusion model 𝝐𝜽⋆ , and ∇𝐱 log 𝑝(𝑑𝜏 ∣ 𝐱) is learned by the
domain classifier 𝝓⋆. Accordingly, we can generate ‘‘labeled’’ target
domain samples by ∇𝐱 log 𝑝(𝐱 ∣ 𝑦, 𝑑𝜏 ) to facilitate domain adaptation.

3.3.2. Generalization properties of DCDM
In this section, we study the generalization properties of DCDM. Let

(𝑓 , 𝑓 ′) = 𝑃 (𝑓 (𝐱) ≠ 𝑓 ′(𝐱)),  (𝑓 , 𝑓 ′) = 𝑃 (𝑓 (𝐱) ≠ 𝑓 ′(𝐱)),
𝑠 (𝐱,𝑦)∼ 𝜏 (𝐱,𝑦)∼

5 
𝑔(𝑓 , 𝑓 ′) = 𝑃(𝐱,𝑦)∼(𝑓 (𝐱) ≠ 𝑓 ′(𝐱)), and �̂�(𝑓 , 𝑓 ′) = 𝑃(𝐱,𝑦)∼̂ (𝑓 (𝐱) ≠ 𝑓 ′(𝐱))
e the disagreements between models 𝑓 and 𝑓 ′ on data distributions ,
, , and ̂, respectively, where  and  denote the source and target
istributions, respectively, and  and ̂ denote the distributions of 𝑔
nd �̂�, respectively. When 𝑓 ′ is an oracle (i.e., 𝑓 ′(𝐱) is the ground-
ruth label 𝑦 of 𝐱), we simply write 𝑠(𝑓 ) = 𝑃(𝐱,𝑦)∼ (𝑓 (𝐱) ≠ 𝑦), 𝜏 (𝑓 ) =
(𝐱,𝑦)∼ (𝑓 (𝐱) ≠ 𝑦), 𝑔(𝑓 ) = 𝑃(𝐱,𝑦)∼(𝑓 (𝐱) ≠ 𝑦), and �̂�(𝑓 ) = 𝑃(𝐱,𝑦)∼̂ (𝑓 (𝐱) ≠
) (the expected risks of 𝑓 on ,  , , and ̂ respectively). The
orresponding empirical risks are ̂𝑠(𝑓 ) = 1

𝑁𝑠

∑

(𝐱𝑖 ,𝑦𝑖)∈𝑠
I(𝑓 (𝐱𝑖) ≠ 𝑦𝑖),

̂𝜏 (𝑓 ) = 1
𝑁𝜏

∑

(𝐱𝑖 ,𝑦𝑖)∈𝜏
I(𝑓 (𝐱𝑖) ≠ 𝑦𝑖), ̂𝑔(𝑓 ) = 1

�̂�𝑔

∑

(𝐱𝑖 ,𝑦𝑖)∈𝑔
I(𝑓 (𝐱𝑖) ≠ 𝑦𝑖),

nd ̂�̂�(𝑓 ) = 1
�̂�𝑠

∑

(𝐱𝑖 ,𝑦𝑖)∈�̂�
I(𝑓 (𝐱𝑖) ≠ 𝑦𝑖), where I(⋅) is the indicator

unction. Let 𝑓⋆
𝑠 be the classifier trained from the source domain. We

have the following Proposition.

Proposition 3.1. Denote the hypothesis space for classifier 𝑓 (in problem
(9)) by , and its VC dimension by 𝑉 . For 𝛿 > 0, with probability 1 − 2𝛿,
he expected risk 𝜏 (𝑓 ) is bounded as:

𝜏 (𝑓 ) ≤ 𝜂
(

̂𝑠
(

𝑓⋆
𝑠
)

+ 1
2
𝑑𝛥 (𝑠,𝜏 ) + 𝐶

)

+ 𝜀(𝛿 , 𝑉 , 𝑁�̂�)

+ (1 − 𝜂)
(

̂𝑔(𝑓⋆
𝑠 ) +

1
2
𝑑𝛥 (𝑔 ,𝜏 ) + 𝐶

)

, (10)

where 𝜂 = 𝑁𝑠
𝑁�̂�

, 𝐶 = 4
√

2𝑉 log(2𝑁�̂�)+log
2
𝛿

𝑁�̂�
, 𝜀(𝛿 , 𝑉 , 𝑁�̂�) =

√

1
2𝑁�̂�

ln 2𝑉
𝛿 , and

̂𝛥 (,′) is the empirical 𝛥-distance between  and ′ (Ben-David
t al., 2010).

Proof. Using Theorem 2 in Ben-David et al. (2010), for any 𝑓 , 𝑓 ∈ ,
ith probability 1 − 𝛿, we have

𝜏 (𝑓 ) ≤ �̂�(𝑓 ) + 1
2
𝑑𝛥 (̂ ,  ). (11)

𝑑𝛥 (̂ ,  ), the 𝛥-distance4 between ̂ and  , satisfies
1
2
𝑑𝛥 (̂ ,  )

= sup
𝑓 ,𝑓

|𝜏 (𝑓 , 𝑓 ) − �̂�(𝑓 , 𝑓 )|

= sup
𝑓 ,𝑓

(|𝜂(𝜏 (𝑓 , 𝑓 ) − 𝑠(𝑓 , 𝑓 )) + (1 − 𝜂)(𝜏 (𝑓 , 𝑓 ) − 𝑔(𝑓 , 𝑓 ))|)

≤ 1
2
𝜂 𝑑𝛥 ( , )+ 1

2
(1 −𝜂)𝑑𝛥 (,  ) . (12)

Combining inequalities (11) and (12) gives
𝜏 (𝑓 )

≤ �̂�(𝑓 ) + 1
2
𝑑𝛥 (̂ ,  )

= �̂�(𝑓 ) + ̂�̂�
(

𝑓⋆
𝑠
)

− ̂�̂�
(

𝑓⋆
𝑠
)

+ 1
2
𝑑𝛥 (̂ ,  )

≤ ̂�̂�(𝑓 ) + 𝜀(𝛿 , 𝑉 , 𝑁�̂�) + ̂�̂�
(

𝑓⋆
𝑠
)

− ̂�̂�
(

𝑓⋆
𝑠
)

+ 1
2
𝑑𝛥 (̂ ,  ) (13)

≤ ̂�̂�
(

𝑓⋆
𝑠
)

+ 1
2
𝑑𝛥 (̂ ,  ) + 𝜀(𝛿 , 𝑉 , 𝑁�̂�) (14)

≤ 𝜂̂𝑠
(

𝑓⋆
𝑠
)

+ (1 − 𝜂)̂𝑔
(

𝑓⋆
𝑠
)

+ 1
2
[

𝜂 𝑑𝛥 ( ,  ) + (1 − 𝜂) 𝑑𝛥 (,  )
]

+ 𝜀(𝛿 , 𝑉 , 𝑁�̂�) (15)

= 𝜂
(

̂𝑠
(

𝑓⋆
𝑠
)

+ 1
2
𝑑𝛥 ( ,  )

)

+ 𝜀(𝛿 , 𝑉 , 𝑁�̂�)

+ (1 − 𝜂)
(

̂𝑔(𝑓⋆
𝑠 ) +

1
2
𝑑𝛥 (,  )

)

.

≤ 𝜂
(

̂𝑠
(

𝑓⋆
𝑠
)

+ 1
2
𝑑𝛥 (𝑠,𝜏 ) + 𝐶

)

+ 𝜀(𝛿 , 𝑉 , 𝑁�̂�)

4 For any 𝑓 , 𝑓 ′ ∈ , 𝑑𝛥 (,′) =
2 sup |𝑃 (𝑓 (𝐱) ≠ 𝑓 ′(𝐱)) − 𝑃 (𝑓 (𝐱) ≠ 𝑓 ′(𝐱))|
𝑓 ,𝑓 ′∈ 𝐱∼ 𝐱∼′



Y. Zhang et al. Neural Networks 184 (2025) 107031 
Fig. 2. Example images from Office-31, Office–Home, VisDA-2017, and DomainNet datasets.
,

+ (1 − 𝜂)
(

̂𝑔(𝑓⋆
𝑠 ) +

1
2
𝑑𝛥 (𝑔 ,𝜏 ) + 𝐶

)

, (16)

where inequality (13) holds with probability 1 −𝛿 according to Eq. (2.1)
in Abu-Mostafa, Magdon-Ismail, and Lin (2012), inequality (14) holds
since 𝑓 is optimized by the UDA methods based on the augmented
source domain and target domain while 𝑓⋆

𝑠 is optimized only in the
source domain, leading to ̂�̂�(𝑓 ) ≤ ̂�̂�

(

𝑓⋆
𝑠
)

, and inequality (15) holds
due to ̂�̂�(𝑓⋆

𝑠 ) = 𝜂̂𝑠
(

𝑓⋆
𝑠
)

+ (1 − 𝜂)̂𝑔
(

𝑓⋆
𝑠
)

and inequality (12). Then we
reach the conclusion. □

Proposition 3.1 shows that the expected risk of DCDM on the target
domain is upper-bounded by a convex combination of two terms with
weights 𝜂 and 1 − 𝜂. The first one is determined by the empirical risk
in the source domain and the distance between the source and target
domains, while the second term depends on the empirical risk of the
generated domain and its distance to the target domain.

4. Experiments

In this section, we empirically evaluate the proposed DCDM on a
number of benchmark datasets.

4.1. Settings

Datasets. Experiments are performed on five UDA benchmark datasets
that have been commonly used (Jin et al., 2020; Sun et al., 2022;
Zhang et al., 2023). Example images are shown in Fig. 2, and dataset
statistics are detailed in Table 1. (i) Office-31 (Saenko, Kulis, Fritz, &
Darrell, 2010) contains 4,110 images from 31 classes of three domains
(i.e., Amazon (A), DSLR (D), and Webcam (W)). Six transfer tasks
(A→W, D→W, W→D, A→D, D→A, W→A) are constructed. (ii) Office–
Home (Venkateswara, Eusebio, Chakraborty, & Panchanathan, 2017)
contains 15,500 images from 65 classes of four domains (i.e., Art (Ar),
Clipart (Cl), Product (Pr), and Real-World (Rw)). All combinations
of domain transfer are considered, leading to a total of 12 transfer
tasks. (iii) VisDA-2017 (Peng et al., 2017) is a large-scale synthetic-
to-real dataset with 207,785 images from 12 classes of two domains
(i.e., Synthetic and Real). Following Jin et al. (2020), Rangwani et al.
(2022), we consider the transfer task Synthetic → Real. (iv) miniDomain-
Net (Zhou, Yang, Qiao, & Xiang, 2021) is a subset of DomainNet (Peng
et al., 2019), with 140,006 images from 126 classes of four domains
(i.e., Clipart (C), Painting (P), Real (R), and Sketch (S)). Following Xie,
Li, Zhang, and Liu (2023), 12 transfer tasks are constructed. (v) Do-
mainNet (Peng et al., 2019) is a large-scale dataset contains about
0.6 million images of 345 classes in six domains (i.e., Clipart (clp),
Infograph (inf), Painting (pnt), Quickdraw (qdr), Real (rel), and Sketch
(skt)).
Baselines.We compare with empirical risk minimization (ERM) (Vapnik
1999) and a number of UDA methods, including (i) discrepancy-based
methods: AFN (Xu et al., 2019), MDD (Zhang et al., 2019), MCC (Jin
et al., 2020), (ii) adversarial-based methods: DANN (Ganin et al., 2016),
CDAN (Long et al., 2018), SDAT (Rangwani et al., 2022), ELS (Zhang
et al., 2023), TVT (Yang, Liu, et al., 2023), SSRT (Sun et al., 2022),
6 
Table 1
Statistics of the datasets used.

Dataset Number of Number of Number of Number of
images classes domains tasks

Office-31 4,110 31 3 6
Office–Home 15,500 65 4 12
VisDA-2017 207,785 12 2 1
miniDomainNet 140,006 126 4 12
DomainNet 586,575 345 6 30

GH++ (Huang et al., 2024), and (iii) augmentation-based methods:
BDG (Yang, Xia, et al., 2020), MSGD (Xia et al., 2023), and Adapt
Anything (Chen et al., 2023). We combine the proposed DCDM with the
state-of-the-art UDA methods (namely, MCC, ELS, and SSRT). Note that
we use the same UDA method in both the label-conditioned training and
domain-guided generation steps, though in general they can be different.
Implementation Details. To initialize 𝝐𝜽, we use the CDPM in Dhariwal
and Nichol (2021), which is pretrained on ImageNet and has a U-
Net (Ronneberger et al., 2015) architecture. The resolutions of the
generated images are 128 × 128 for the miniDomainNet dataset, and
256 × 256 for the other datasets. The images in the source and target
domains are processed to the same resolution as the generated images.
For each class, 200, 200, 2,000, 200, and 100 images are generated for
the Office-31, Office–Home, VisDA-2017, miniDomainNet, and DomainNet
datasets, respectively. TVT, SSRT, and GH++ adopt the ViT-base back-
bone (Dosovitskiy, 2020) for all datasets. Apart from these methods,
following Rangwani et al. (2022), Zhou et al. (2021), the ResNet-50 (He,
Zhang, Ren, & Sun, 2016) is used as the backbone for the UDA model
on Office-31 and Office–Home, while the ResNet-101 is used for VisDA-
2017, and ResNet-18 for miniDomainNet. The learning rate scheduler
follows Ganin et al. (2016). For ELS+DCDM, the initial learning rate is
0.002 for Office-31 and VisDA-2017, and 0.01 for the other two datasets.
For MCC+DCDM, the initial learning rate is 0.002 for VisDA-2017, and
0.005 for the other three datasets. For SSRT+DCDM, the learning rate
follows SSRT (Sun et al., 2022). All experiments are run on an NVIDIA
V100 GPU.

4.2. Results

Tables 2–6 show the transfer accuracies on Office-31, Office–Home,
VisDA-2017, miniDomainNet, and DomainNet datasets, respectively. Ac-
cording to the results on Office-31, we can see that SSRT+DCDM has the
best performance on all tasks. Among them, on the three challenging
tasks (i.e., A→W, W→A, and D→A), DCDM brings significant perfor-
mance improvements to MCC, ELS, and SSRT. And DCDM performs
better than the augmentation-based methods MSGD, BDG, and Adapt
Anything. Moreover, SSRT+DCDM achieves the highest average accu-
racy on Office-31, Office–Home, VisDA-2017, and DomainNet, showing
the proposed DCDM method is effective. Specifically, SSRT+DCDM
is the best on nine tasks, seven categories, and 27 tasks of Office–
Home, VisDA-2017, and DomainNet, respectively. On Office–Home, the
proposed method achieves an average performance improvement of
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Fig. 3. Real and generated images for the transfer task A→W from the Office-31 dataset.
Fig. 4. Real source images (top) and generated source images (bottom) for the transfer task A→W from the Office-31 dataset.
Table 2
Transfer accuracies (%) on Office-31. ∗ denotes the ViT-base backbone. The best is in
bold.

A→W D→W W→D A→D D→A W→A Average

ERM (Vapnik, 1999) 77.07 96.60 99.20 81.08 64.11 64.01 80.35
DANN (Ganin et al., 2016) 89.85 97.95 99.90 83.26 73.28 73.75 86.33
AFN (Xu et al., 2019) 91.82 98.77 100.0095.12 72.43 70.71 88.14
CDAN (Long et al., 2018) 92.42 98.62 100.0091.44 74.61 72.80 88.32
MDD (Zhang et al., 2019) 93.55 98.66 100.0093.92 75.29 73.95 89.23
SDAT (Rangwani et al., 2022) 91.32 98.83 100.0095.25 76.97 73.19 89.26
BDG (Yang, Xia, et al., 2020) 93.60 99.00 100.0093.60 73.20 72.00 88.50
MSGD (Xia et al., 2023) 95.50 99.20 100.0095.60 77.30 77.00 90.80
Adapt Anything (Chen et al., 2023)94.20 94.20 95.20 95.20 82.10 82.10 90.50
TVT∗ (Yang, Liu, et al., 2023) 96.35 99.37 100.0096.39 84.91 86.05 93.85
SSRT+GH++∗ (Huang et al., 2024) 98.90 99.30 100.0098.80 84.60 83.30 94.10

MCC (Jin et al., 2020) 94.09 98.32 99.67 94.25 75.89 75.46 89.61
MCC+DCDM 95.51 98.58 99.93 95.31 78.26 78.43 91.01
ELS (Zhang et al., 2023) 93.84 98.78 100.0095.78 77.72 75.13 90.21
ELS+DCDM 96.90 98.91 100.0097.46 79.79 77.74 91.80
SSRT∗ (Sun et al., 2022) 97.70 99.20 100.0098.60 83.50 82.20 93.50
SSRT+DCDM∗ 100.00100.00100.0099.9085.0686.6995.29

1.47%, 1.80%, and 1.11% for MCC, ELS, and SSRT, respectively. On
VisDA, DCDM achieves an average performance improvement of 3.24%,
2.89%, and 1.02% for MCC, ELS, and SSRT, respectively. On miniDo-
mainNet, DCDM achieves an average performance improvement of
1.63% and 3.51% for MCC and ELS, respectively. On DomainNet, DCDM
brings a noticeable average performance improvement (> +3%) to
SSRT, verifying the usefulness of DCDM on this large-scale dataset.

4.3. Analysis of generated samples

Fig. 3 shows the generated target samples of the transfer task A→W
on Office-31. As can be seen, the generated samples (in Fig. 3(c)) are
of high quality and have a similar style to the real target domain
samples (in Fig. 3(b)). For example, in the second row of Fig. 3,
the real target domain has only black backpacks, while the generated
images contain backpacks in various colors. One possible reason is
7 
Fig. 5. Real source domain images and generated target domain images for the transfer
task W→A from the Office-31 dataset.

that DCDM incorporates source domain samples during the diffusion
training process, allowing it to generate backpacks with more colors
related to the source domain (e.g., red and blue) while preserving the
style of the target domain. Similarly, in the third row of Fig. 3, the
target domain samples contain only metal-style file cabinets, while the
generated images have cabinets of more styles (e.g., brown and black)
that are related to the source domain samples.

With domain guidance, the trained DCDM can also generate source
domain images. Fig. 4 shows the real and generated source domain
images for the transfer task A→W on Office-31. As can be seen, their
styles are similar.

Traditional UDA methods may suffer from spurious correlation in
the source domain (Bao, Chang, & Barzilay, 2022). For example, in
the transfer task W→A from Office-31, all backpacks in the source
domain W are black (Fig. 5(a)), while backpacks in the target domain
are of various colors. However, since the target domain backpacks
are unlabeled, they cannot be used directly. The UDA model may
then mistakenly assume that all backpacks are black, and misclassify
backpacks of the other colors in the target domain. To alleviate this
issue, the proposed DCDM generates ‘‘labeled’’ target domain images in
various colors, as shown in Fig. 5(b). By combining the generated data
and source domain data, ELS+DCDM achieves an accuracy of 97.83%
on the class ‘backpacks’, better than that of ELS (96.74%).
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Table 3
Transfer accuracies (%) on Office–Home. ∗ denotes the ViT-base backbone. The best is in bold.

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Average

ERM (Vapnik, 1999) 44.06 67.12 74.26 53.26 61.96 64.54 51.91 38.90 72.94 64.51 43.84 75.39 59.39
DANN (Ganin et al., 2016) 52.53 62.57 73.20 56.89 67.02 68.34 58.37 54.14 78.31 70.78 60.76 80.57 65.29
AFN (Xu et al., 2019) 52.58 72.42 76.96 64.90 71.14 72.91 64.08 51.29 77.83 72.21 57.46 82.09 67.99
CDAN (Long et al., 2018) 54.21 72.18 78.29 61.97 71.43 72.39 62.96 55.68 80.68 74.71 61.22 83.68 69.12
MDD (Zhang et al., 2019) 56.37 75.53 79.17 62.95 73.21 73.55 62.56 54.86 79.49 73.84 61.45 84.06 69.75
SDAT (Rangwani et al., 2022) 58.20 77.46 81.35 66.06 76.45 76.41 63.70 56.69 82.49 76.02 62.09 85.24 71.85
BDG (Yang, Xia, et al., 2020) 51.50 73.40 78.70 65.30 71.50 73.70 65.10 49.70 81.10 74.60 55.10 84.80 68.70
MSGD (Xia et al., 2023) 58.70 76.90 78.90 70.10 76.20 76.60 69.00 57.20 82.30 74.90 62.70 84.50 72.40
Adapt Anything (Chen et al., 2023) 71.60 88.40 89.00 84.20 88.40 89.00 84.20 71.60 89.00 84.20 71.60 88.40 83.30
TVT∗ (Yang, Liu, et al., 2023) 74.89 86.82 89.47 82.78 87.95 88.27 79.81 71.94 90.13 85.46 74.62 90.56 83.56
SSRT+GH++∗ (Huang et al., 2024) 75.50 89.60 91.40 86.10 89.40 90.30 85.40 75.20 91.30 86.90 79.70 92.40 86.10

MCC (Jin et al., 2020) 56.83 79.81 82.66 67.80 77.02 77.82 66.98 55.43 81.79 73.95 61.41 85.44 72.24
MCC+DCDM 58.23 80.33 82.91 70.14 79.15 81.36 68.49 57.75 83.44 74.18 63.81 85.67 73.71
ELS (Zhang et al., 2023) 57.79 77.65 81.62 66.59 76.74 76.43 62.69 56.69 82.12 75.63 62.85 85.35 71.84
ELS+DCDM 60.35 78.81 82.74 69.59 80.53 79.55 65.16 58.26 83.11 75.81 64.18 85.55 73.64
SSRT∗ (Sun et al., 2022) 75.17 88.98 91.09 85.13 88.29 89.95 85.04 74.23 91.26 85.70 78.58 91.78 85.43
SSRT+DCDM∗ 79.34 91.55 91.65 86.53 90.04 90.38 84.96 76.59 91.39 84.47 78.92 92.70 86.54
Table 4
Transfer accuracies (%) on VisDA-2017. ∗ denotes the ViT-base backbone. The best is in bold.

Aero Bicycle Bus Car Horse Knife Motor Person Plant Skate Train Truck Mean

ERM (Vapnik, 1999) 81.71 22.46 54.08 76.21 74.83 10.69 83.81 18.71 80.88 28.66 79.66 5.98 51.47
DANN (Ganin et al., 2016) 94.75 73.47 83.46 47.91 87.00 88.30 88.47 77.18 88.16 90.05 87.21 42.26 79.02
AFN (Xu et al., 2019) 93.13 54.76 81.03 69.74 92.36 75.88 92.11 73.83 93.16 55.55 90.48 23.63 74.64
CDAN (Long et al., 2018) 94.55 74.41 82.22 58.92 90.56 96.22 89.71 78.90 86.11 89.06 84.81 43.42 80.74
MDD (Zhang et al., 2019) 92.68 65.26 82.29 66.78 91.68 92.09 93.18 79.67 92.12 84.95 83.85 48.66 81.10
SDAT (Rangwani et al., 2022) 94.51 83.56 74.28 65.78 93.00 95.83 89.61 80.04 90.86 91.47 84.95 54.93 83.23
Adapt Anything (Chen et al., 2023) 99.00 88.00 89.40 92.10 98.40 97.70 96.80 76.60 98.00 93.20 94.70 52.40 89.70
TVT∗ (Yang, Liu, et al., 2023) 92.92 85.58 77.51 60.48 93.60 98.17 89.35 76.40 93.56 92.02 91.69 55.73 83.92
SSRT+GH++∗ (Huang et al., 2024) 99.23 88.53 89.57 85.34 98.23 98.80 96.95 83.68 95.37 97.41 94.18 45.07 89.36

MCC (Jin et al., 2020) 95.26 86.14 77.12 69.98 92.83 94.84 86.52 77.78 90.26 90.98 85.68 52.52 83.32
MCC+DCDM 96.43 87.28 83.16 74.37 94.59 96.13 88.60 81.90 92.98 94.45 87.26 61.56 86.56
ELS (Zhang et al., 2023) 94.76 83.38 75.44 66.45 93.16 95.14 89.09 80.13 90.77 91.06 84.09 57.36 83.40
ELS+DCDM 96.20 84.79 83.15 73.28 94.76 96.58 90.99 82.21 92.98 93.37 87.49 59.70 86.29
SSRT∗ (Sun et al., 2022) 98.93 87.60 89.10 84.77 98.34 98.70 96.27 81.08 94.86 97.90 94.50 43.13 88.76
SSRT+DCDM∗ 99.29 91.54 90.02 79.03 98.70 99.08 95.77 81.98 94.99 98.38 96.36 52.18 89.78
Table 5
Transfer accuracies (%) on miniDomainNet. The best is in bold.

C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Average

ERM (Vapnik, 1999) 39.48 53.27 42.93 49.55 68.18 41.99 49.30 55.52 37.35 54.60 45.33 53.08 49.22
DANN (Ganin et al., 2016) 45.94 56.12 49.40 50.72 65.61 50.07 55.15 60.55 49.95 58.54 54.64 58.99 54.64
AFN (Xu et al., 2019) 49.23 60.11 51.11 55.60 70.59 51.78 55.84 60.41 47.46 60.69 56.36 62.28 56.79
CDAN (Long et al., 2018) 47.99 58.50 51.17 56.36 68.71 53.01 61.15 62.85 53.44 60.89 55.90 60.88 57.57
MDD (Zhang et al., 2019) 48.53 61.75 52.32 59.74 70.62 55.43 62.18 62.22 54.04 63.07 58.55 64.50 59.41
SDAT (Rangwani et al., 2022) 50.97 62.42 53.91 60.57 69.97 55.85 64.39 64.83 55.86 64.07 59.43 64.28 60.55

MCC (Jin et al., 2020) 51.95 67.73 52.66 60.96 76.61 54.67 64.15 64.02 50.34 63.64 59.68 69.78 61.35
MCC+DCDM 55.28 70.21 54.42 63.25 77.05 55.74 65.16 65.01 51.96 65.76 60.83 71.09 62.98
ELS (Zhang et al., 2023) 50.11 61.45 53.02 60.77 70.61 56.04 62.43 64.16 54.89 63.93 59.19 64.47 60.09
ELS+DCDM 56.14 68.52 55.51 64.96 73.44 58.23 64.67 64.36 57.66 67.23 62.56 69.90 63.60
Table 6
Transfer accuracies (%) on DomainNet. ∗ denotes the ViT-base backbone.

ERM clp inf pnt qdr rel skt Avg. MCC clp inf pnt qdr rel skt Avg. MDD clp inf pnt qdr rel skt Avg.

clp – 18.0 36.2 12.1 53.6 42.6 32.5 clp – 19.9 39.6 9.0 56.9 43.6 33.8 clp – 20.5 40.7 6.2 52.5 42.1 32.4
inf 41.0 – 35.7 4.7 52.9 31.2 33.1 inf 37.2 – 38.1 3.0 54.8 26.6 31.9 inf 33.0 – 33.8 2.6 46.2 24.5 28.0
pnt 46.0 18.5 – 6.2 59.9 38.5 34.4 pnt 48.4 19.7 – 4.4 61.1 41.2 35.0 pnt 43.7 20.4 – 2.8 51.2 41.7 32.0
qdr 13.6 1.2 2.1 – 6.0 10.2 6.6 qdr 18.5 3.9 9.2 – 17.6 13.0 12.4 qdr 18.4 3.0 8.1 – 12.9 11.8 10.8
rel 51.8 21.8 50.3 7.4 – 38.0 33.9 rel 55.1 22.5 54.0 4.7 – 37.8 34.8 rel 52.8 21.6 47.8 4.2 – 41.2 33.5
skt 54.8 15.6 38.6 14.1 49.9 – 34.6 skt 60.0 18.7 47.3 10.3 57.9 – 38.8 skt 54.3 17.5 43.1 5.7 54.2 – 35.0
Avg. 42.0 15.0 32.6 8.9 44.5 32.1 29.2 Avg. 43.8 16.9 37.6 6.3 49.6 32.4 32.4 Avg. 40.4 16.6 34.7 4.3 43.4 32.3 28.6

SSRT+GH++∗ clp inf pnt qdr rel skt Avg. SSRT∗ clp inf pnt qdr rel skt Avg. SSRT+DCDM∗ clp inf pnt qdr rel skt Avg.

clp – 35.8 60.9 22.9 76.0 61.8 51.5 clp – 33.8 60.2 19.4 75.8 59.8 49.8 clp – 33.0 62.0 32.9 78.1 61.2 53.4
inf 56.0 – 55.2 11.4 69.1 49.8 48.3 inf 55.5 – 54.0 9.0 68.2 44.7 46.3 inf 58.5 – 58.7 17.1 75.7 52.2 52.4
pnt 62.3 33.3 – 10.7 71.6 56.4 46.9 pnt 61.7 28.5 – 8.4 71.4 55.2 45.0 pnt 64.2 30.7 – 19.2 76.9 57.6 49.7
qdr 43.5 13.7 23.3 – 38.7 35.3 30.9 qdr 42.5 8.8 24.2 – 37.6 33.6 29.3 qdr 43.3 10.4 23.1 – 27.6 35.4 27.9
rel 70.8 39.8 66.3 10.8 – 61.5 49.8 rel 69.9 37.1 66.0 10.1 – 58.9 48.4 rel 70.3 37.2 66.4 21.0 – 59.5 50.8
skt 71.7 34.8 62.6 23.4 73.4 – 53.2 skt 70.6 32.8 62.2 21.7 73.2 – 52.1 skt 70.9 33.1 64.8 31.5 77.5 – 55.5
Avg. 60.9 31.5 53.7 15.8 65.8 53.0 46.8 Avg. 60.0 28.2 53.3 13.7 65.3 50.4 45.2 Avg. 61.4 28.9 55.0 24.3 67.1 53.2 48.3
8 



Y. Zhang et al. Neural Networks 184 (2025) 107031 
Fig. 6. t-SNE visualization of the six tasks on Office-31. The generated and original target domain samples are in red and blue, respectively.
Table 7
-distance across domains on six tasks of the Office-31 dataset.

A→W D→W W→D A→D D→A W→A Average

𝑠 and 𝜏 1.84 0.71 0.89 1.90 1.68 1.90 1.54
𝑔 and 𝜏 0.45 0.33 0.51 0.57 1.20 1.31 0.73
�̂� and 𝜏 0.64 0.51 0.52 0.65 1.31 1.39 0.84
Fig. 7. The images from left to right, separated by black solid lines, are source domain samples, target domain samples, and generated target domain samples, respectively. (a)
Transfer task Ar→Cl from the Office–Home dataset. (b) Transfer task Synthetic→Real from the VisDA dataset. (c) Transfer task R→S from the miniDomainNet dataset.
Fig. 6 shows the t-SNE visualization (Van der Maaten & Hinton,
2008) of feature embeddings for samples from the six transfer tasks on
Office-31 (using a ResNet-50 pretrained on ImageNet). As can be seen,
embeddings of the generated target domain samples (in red) are close
to those of the real target domain samples (in blue). Table 7 shows the
-distances5 (Ben-David, Blitzer, Crammer, & Pereira, 2006) (which
measure distributional discrepancies) of 𝑠∕𝑔∕�̂� to 𝜏 . As can be
seen, compared with 𝑠, 𝑔 and �̂� are closer to 𝜏 on all six tasks,
implying that the samples generated by DCDM make it easier to transfer
from the augmented source domain �̂� to the target domain 𝜏 than
the source domain 𝑠.

Moreover, we use the generated target domain samples from the
Ar→Pr task to perform the Ar→Cl task, and the generated target domain

5 The -distance is defined as 𝑑(𝑠,𝑡) = 2 (1 − 2𝜈), where 𝜈 is the error
rate of a linear domain discriminator to distinguish samples from the two
domains.
9 
samples from the Ar→Cl task to perform the Ar→Pr task. The experi-
mental results, showing a performance drop from 57.79% to 54.00%
for the Ar→Cl task and from 77.65% to 68.69% for the Ar→Pr task,
indicate that the augmented samples, which deviate from the target
domain distribution, lead to negative transfer. Therefore, the transfer
performance is influenced by the distance between the generated target
samples and the real target domain samples, i.e., 𝑑𝛥 (𝑔 ,𝜏 ), as
shown in the right-hand side of Eq. (10).

Figs. 7(a), (b) and (c) show some generated images for the transfer
tasks Ar→Cl, Synthetic→Real, and R→S on Office–Home, VisDA-2017,
and miniDomainNet, respectively. According to the generated images,
we can see that the styles of the generated samples are similar to those
of the real target domain samples.

4.4. Ablation studies

In this section, we perform a number of ablation experiments on
Office-31.
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Table 8
Effect of class condition (denoted ‘‘Class’’) and domain guidance (denoted ‘‘Domain’’) on accuracy (%) of the Office-31 dataset. The best is in bold.

Class Domain A→W D→W W→D A→D D→A W→A Average

✗ ✗ 93.84 98.78 100.00 95.78 77.72 75.13 90.21
✓ ✗ 94.48 99.00 100.00 96.92 79.09 76.88 91.06
✓ ✓ 96.90 98.91 100.00 97.46 79.79 77.74 91.80
Fig. 8. Generated target domain images for the transfer task A→W of the Office-31 dataset.
Table 9
Transfer accuracies (%) for different combinations for controlling classes and domains on the Office-31 dataset. The best is in bold.
Class Domain A→W D→W W→D A→D D→A W→A Average

Condition Condition 96.86 98.99 100.00 96.59 79.23 77.32 91.50
Condition Guidance 96.90 98.91 100.00 97.46 79.79 77.74 91.80
Guidance Condition 93.96 98.36 100.00 93.17 72.88 73.34 88.62
Guidance Guidance 90.82 96.73 99.00 90.56 70.86 68.65 86.10
4.4.1. Effects of domain guidance in DCDM
In this experiment, we study the effect of domain guidance. We

consider the three combinations: (i) without class condition and domain
guidance (i.e., ELS); (ii) with class condition but without domain
guidance (denoted ‘‘ELS+DCDM (w/o domain guidance)’’); (iii) with
both class condition and domain guidance (i.e., ELS+DCDM).

Table 8 shows the results of six transfer tasks on Office-31. As can be
seen, ELS+DCDM achieves better performance than ELS+DCDM (w/o
domain guidance) on average, demonstrating the effectiveness of using
domain guidance for generating samples. Additionally, Fig. 8 shows the
target domain backpack images generated by ELS+DCDM (w/o domain
guidance) and ELS+DCDM for the transfer task A→W. As can be seen,
when training with only the target domain (w/o domain guidance),
only black and gray backpacks can be generated (Fig. 8(a)). The reason
is that the target domain only contains backpacks in those colors. In
contrast, with the introduction of source domain samples and domain
guidance, backpacks of various colors similar to the target domain
distribution are generated (Fig. 8(b)). Therefore, the proposed domain
guidance strategy could leverage information from the source domain
to enhance the diversity of generated samples.

4.4.2. Effects of condition and guidance in DCDM
In this experiment, we study the different combinations of guidance

and conditional methods for controlling classes and domains. We con-
sider four combinations: (i) Both the classes and domains are controlled
by conditions, with the label and domain embeddings added together
and then fed to the conditional diffusion model in Algorithm 1; (ii) The
classes are controlled by condition while the domains are controlled
by guidance (i.e., the proposed DCDM); (iii) The classes are controlled
by guidance while the domains are controlled by condition, with the
classifier trained on the source domain data and target domain samples
with pseudo-labels, and the domain labels are used as the condition 𝐜
in Eq. (5); (iv) Both the classes and domains are controlled by guidance
(i.e., the sum of gradients of the class classifier and domain classifier,
which are trained separately).

Table 9 shows the testing accuracies on the six transfer tasks from
Office-31. As can be seen, the combination that uses condition on
10 
classes and guidance on domains achieves the best performance, while
controlling both classes and domains by condition is slightly inferior.
Furthermore, when guidance is used to control the class, the perfor-
mance is usually worse. One possible reason is that as some classes
have limited samples,6 the trained class classifier may not be good
enough for guiding. On the other hand, domain classification is simply
a binary classification problem, which is much easier. Thus, the trained
domain classifier can still be good enough for guidance. Figs. 9(c) and
9(d) show generated images on the ‘‘backpack’’ class for the transfer
task A→D when guidance is used to control the class. As can be seen,
some of the images generated are not backpacks, leading to worse
performance ( Table 9).

4.4.3. Effects of the number of generated samples
In this experiment, we show how the number of target domain

samples generated affects the performance of ELS+DCDM on Office-
31, Office–Home, VisDA-2017, and miniDomainNet. Fig. 10 shows the
average accuracies w.r.t. the number of target domain samples gener-
ated per class. As can be seen, increasing the number of target domain
samples generated boosts the performance. When no target domain
sample is generated, ELS+DCDM degenerates to ELS, which performs
worse than ELS+DCDM on all four datasets. Furthermore, when the
number of target domain samples generated further increases, the
performance saturates and may even slightly decrease. Hence, in the
experiments above, the number of target domain samples generated for
each class is set to 200, 200, 2000, and 200 for Office-31, Office–Home,
VisDA, and miniDomainNet, respectively.

5. Conclusion

In this paper, we propose the DCDM method to generate high-
fidelity samples for the target domain in UDA. The classes of gen-
erated samples are controlled by conditional diffusion models, while

6 For example, domain DSLR (resp. Webcam) has only 16 (resp. 26) samples
per class on average.
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Fig. 9. Generated target domain images for the transfer task A→D from the Office-31 dataset. (a) The class and domain are both controlled by condition. (b) The class is controlled
by condition while the domain is controlled by guidance. (c) The class is controlled by guidance while the domain is controlled by condition. (d) Both class and domain are
controlled by guidance.
Fig. 10. Accuracy w.r.t. target domain samples generated per class on the Office-31, Office–Home, VisDA-2017, and miniDomainNet datasets.
the domain is guided by the domain classifier. DCDM can be inte-
grated into any UDA model. Extensive experimental results demon-
strate that DCDM achieves state-of-the-art performance. Compared with
discrepancy-based and adversarial-based UDA methods, the proposed
method requires an extra process for training and sampling the diffu-
sion model. Also, the generated samples consume extra storage space.
In our future work, we will study applying DCDM to other transfer
learning settings such as multi-source domain adaptation (Wen, Chen,
Xie, Liu, & Zheng, 2024).
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Appendix. Generalization error bound

In the UDA scenario, the target domain is unlabeled. Suppose there
are some labeled target domain samples 𝑔 , and they are augmented
into the source domain. We analyze the generalization error bound of
UDA.

Suppose there are some labeled target domain samples from 
merge into the source domain as the augmented source domain:
11 
̂ = (1 − 𝛼) + 𝛼 ,

where 0 < 𝛼 < 1 indicates the fraction of target domain samples added
to the source domain.

According to Theorem 2 in Ben-David et al. (2010), the general-
ization error bound on the target domain with the augmented source
domain can be defined as:

𝜏 (ℎ) ≤ �̂�(ℎ) + 1
2
𝑑𝛥 (̂ ,  ),

where 𝑑𝛥 (̂ ,  ) denotes the 𝛥-distance between ̂ and  , i.e.,

𝑑𝛥 (̂ ,  ) = 2 sup
ℎ,ℎ′∈

|

|

|

|

Pr
𝑥∼̂

[ℎ(𝑥) ≠ ℎ′(𝑥)] − Pr
𝑥∼

[ℎ(𝑥) ≠ ℎ′(𝑥)]
|

|

|

|

.

Using the definition of the augmented source distribution, we have:

Pr
𝑥∼̂

[ℎ(𝑥) ≠ ℎ′(𝑥)] = (1 − 𝛼) Pr
𝑥∼̂

[ℎ(𝑥) ≠ ℎ′(𝑥)] + 𝛼 Pr
𝑥∼

[ℎ(𝑥) ≠ ℎ′(𝑥)].

Thus, the divergence becomes:
|

|

|

|

Pr
𝑥∼�̂�

[ℎ(𝑥) ≠ ℎ′(𝑥)] − Pr
𝑥∼

[ℎ(𝑥) ≠ ℎ′(𝑥)]
|

|

|

|

=
|

|

|

|

(1 − 𝛼) Pr
𝑥∼

[ℎ(𝑥) ≠ ℎ′(𝑥)] + 𝛼 Pr
𝑥∼

[ℎ(𝑥) ≠ ℎ′(𝑥)] − Pr
𝑥∼

[ℎ(𝑥) ≠ ℎ′(𝑥)]
|

|

|

|

=
|

|

|

|

|

(1 − 𝛼)
(

Pr
𝑥∼

[ℎ(𝑥) ≠ ℎ′(𝑥)] − Pr
𝑥∼

[ℎ(𝑥) ≠ ℎ′(𝑥)]
)

|

|

|

|

|

=(1 − 𝛼)
|

|

|

|

Pr
𝑥∼

[ℎ(𝑥) ≠ ℎ′(𝑥)] − Pr
𝑥∼

[ℎ(𝑥) ≠ ℎ′(𝑥)]
|

|

|

|

.

Therefore, we have:

𝑑𝛥 (̂ ,  ) = (1 − 𝛼)𝑑𝛥 ( ,  )

Since 0 < 𝛼 < 1, we have:

𝑑𝛥 (̂ ,  ) ≤ 𝑑𝛥 ( ,  ).

and the equality holds only when 𝑑𝛥 (̂ ,  ) = 𝑑𝛥 ( ,  ) = 0.
For overparameterized networks which are powerful enough to fit-

ting training samples (Cybenko, 1989; Hornik, Stinchcombe, & White,
1989; Neyshabur, Tomioka, & Srebro, 2015; Zhang, Bengio, Hardt,
Recht, & Vinyals, 2021), the losses 𝑠(ℎ) and �̂�(ℎ) will become negligi-
ble. Thus, the generalization bound with target domain augmentation
may be smaller than that without target domain augmentation since
𝑑 (̂ ,  ) ≤ 𝑑 ( ,  ). However, directly obtaining labeled target
𝛥 𝛥



Y. Zhang et al.

g
T
s

Neural Networks 184 (2025) 107031 
samples is infeasible in the UDA scenario, making it reasonable to use
enerative models to generate labeled samples for the target domain.
o this end, we propose the DCDM method to generate target domain
amples using diffusion models.

Data availability

Data will be made available on request.
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