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Abstract

Recent works show that assembling multiple off-the-shelf large language models
(LLMs) can harness their complementary abilities. To achieve this, routing is a
promising method, which learns a router to select the most suitable LLM for each
query. However, existing routing models are ineffective when multiple LLMs
perform well for a query. To address this problem, in this paper, we propose a
method called query-based Router by Dual Contrastive learning (RouterDC). The
RouterDC model consists of an encoder and LLM embeddings, and we propose
two contrastive learning losses to train the RouterDC model. Experimental results
show that RouterDC is effective in assembling LLMs and largely outperforms
individual top-performing LLMs as well as existing routing methods on both
in-distribution (+2.76%) and out-of-distribution (+1.90%) tasks. Source code is
available at https://github.com/shuhao02/RouterDC.
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Figure 1: The inference pipeline of RouterDC.
The encoder E and the LLM embeddings k’s are
trainable parameters, while the LLMs are frozen.
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Figure 2: Testing accuracy of candidate LLMs
and our RouterDC on in-distribution and out-of-
distribution tasks.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across various tasks.
Many LLMs are publicly available online, such as Mistral [23], LLaMA-2 [43], and LLaMA-3 [42].
Those LLMs have been further fine-tuned to be generalists or specialists. For example, MetaMath [50]
excels in solving mathematical reasoning problems. Since those LLMs are pre-trained or fine-tuned
with various data, they typically exhibit varying strengths and weaknesses across different tasks
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Figure 3: Score distributions of LLMs on an example query (w/ or
w/o normalization).

0 0.10.2 0.4 0.6 0.8 1
Difference of top-2 scores

0

2

4

6

8

De
ns

ity

64%

Figure 4: Distribution of the
score difference between the
top two LLMs.

[24, 30]. Therefore, assembling multiple off-the-shelf LLMs can harness their complementary
abilities, resulting in better performance than relying on a single LLM.

LLM ensembling is a straightforward method to assemble LLMs, which feeds the query to all
candidate LLMs and merges all outputs into a final answer by majority voting [28, 48] or pairwise
ranking [24]. However, this approach is computationally prohibitive as it requires generating outputs
with all candidate LLMs during inference. To tackle this issue, recent works [40, 30, 41] propose
to learn a router to select a suitable LLM for each query. During inference, routing is much more
efficient than ensembling as it only needs to perform inference on the selected LLM.

The current state-of-the-art routing method is ZOOTER [30]. To train a router, ZOOTER scores the
outputs of candidate LLMs as the supervision signal via an off-the-shelf reward model and then learns
the router by minimizing the Kullback-Leibler divergence [26] between the selection probability
from the router and the softmax normalized score. However, this loss is inappropriate when multiple
LLMs perform well for a query. Figure 3 shows the scores of seven LLMs for an example query,
where the top three LLMs have significantly higher scores than the bottom three LLMs. After the
softmax normalization, the scores are small, leading the router to generate small probabilities on the
top LLMs. Moreover, the normalized score tends to be uniform, which is not a strong supervision
signal for learning the router. Figure 4 shows that the score difference between the top two LLMs is
usually tiny (under the experimental setting in Section 4.1), indicating that the loss used in ZOOTER
is suboptimal.

In this paper, we propose a query-based Router by Dual Contrastive learning (RouterDC). The
RouterDC consists of an encoder, whose architecture is a small language model, and learnable LLM
embeddings for candidate LLMs. For each query, we first score the candidate LLMs by comparing
their predictions with the gold label. Instead of directly aligning the score distribution, we leverage
the score to choose the top-performing and bottom-performing LLMs and then propose a sample-LLM
contrastive loss to pull the query embedding (extracted by the encoder) close to the embeddings
of top LLMs while pushing far away from the embeddings of bottom LLMs. Based on this loss,
our RouterDC could equally select one of top-performing LLMs for a query and hence alleviate the
shortcoming of ZOOTER introduced previously. We empirically observe that training the router
using the sample-LLM contrastive loss alone is not stable as similar queries can have dissimilar
embeddings and be assigned to different LLMs. To improve the training stability, we cluster all the
training queries into multiple groups and design a sample-sample contrastive loss to maximize the
similarity between queries in the same group while minimizing the similarity between queries from
different groups.

We conduct experiments on challenging reasoning tasks (language understanding, code generation,
and mathematical reasoning) to evaluate the proposed RouterDC in both in-distribution and out-of-
distribution settings. Empirical results show that RouterDC can harness the complementary potentials
of LLMs, achieving state-of-the-art performance. Moreover, RouterDC outperforms existing routing
methods by a large margin, showing that the proposed two contrastive losses are more beneficial for
training the RouterDC.

Our contributions are summarized as follows. (i) We propose a novel framework to learn a router to
select the suitable LLM for each query by dual contrastive learning, which consists of sample-LLM
and sample-sample contrastive losses; (ii) The proposed RouterDC is parameter-efficient (has less
than 100M parameters) and computation-efficient (without backpropagating the gradients through
LLMs) in training. Moreover, RouterDC is also efficient in inference (6× faster than Voting) as it only
requires computation cost for the selected LLM and negligible cost for the router; (iii) Experimental
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results show that RouterDC effectively assembles LLMs and outperforms individual top-performing
LLMs as well as existing routing methods on both in-distribution (+2.76%) and out-of-distribution
(+1.90%) tasks.

2 Related Work

Large Language Models (LLMs). LLMs have achieved great success in natural language processing
and many foundation models have been released online [23, 43, 42]. Many prior works [50, 44,
54, 9, 8, 38, 19, 31] focus on fine-tuning those foundation models to obtain specialized LLMs for
solving versatile tasks, for example, language understanding [54, 19], code generation [38, 8], and
mathematical reasoning [50, 31]. In this paper, we study the problem of assembling LLMs to harness
their strengths by a router.

LLM Ensembling. The goal of LLM ensembling is to leverage multiple LLMs to boost performance
compared with a single model across various downstream tasks. Voting [28, 48] is a simple but
effective ensemble method. Jiang et al. [24] further propose PairRanker and GenFuser to generate
an improved output from the outputs of all LLMs, which needs to call LLMs O(T 2) times with
T as the number of LLMs. LLM cascading [2, 12, 35, 51] query a list of LLMs (whose capacity
depends on the model size) sequentially until an LLM’s output is satisfied (i.e., having a significantly
high confidence score), which is returned as the final output. Fusion of Experts [47] concatenates
all LLMs outputs to build the final output and casts it as a supervised learning problem. Unlike
the aforementioned ensembling methods which require querying the LLMs at least O(T ) times in
inference, our RouterDC is much more efficient as it only needs to call the selected LLM once.

LLM Routing. LLM routing aims to select the most suitable model for a query without calling all
LLMs. Many works have been proposed to design an effective routing strategy. Shnitzer et al. [40]
propose a collection of binary classifiers to evaluate the correctness of each LLM. Lu et al. [30]
propose ZOOTER to align a router with the supervision from the reward model. LoraRetriever [52]
propose a task-wise router to select the LLM by predicting the task identity of the query. Srivatsa
et al. [41] explore the routing ability using both classifier-based and clustering-based approaches.
Though those routers are cost-effective, they neglect the fact that multiple LLMs can be well-
suited to answer a single query. In contrast, the proposed RouterDC leverages contrastive losses to
simultaneously consider the strengths of several powerful LLMs.

Contrastive Learning. Contrastive learning learns effective representations by distinguishing
between similar and dissimilar pairs of data points. It has been widely used in various tasks, such
as visual representation learning [4, 13], sentence representation leaning [11, 49, 39], and vision-
language alignment [36, 55]. In this paper, we propose two contrastive losses to learn the RouterDC
for assembling LLMs.

3 Methodology

In this section, we propose RouterDC, a framework for learning a query-based router to assemble
LLMs. An overview is illustrated in Figure 1. We introduce the problem of router learning in
Section 3.1 and design a scoring method to measure the performance of LLMs on each training query
(Section 3.2). Next, we propose two contrastive losses to train the router, including a sample-LLM
contrastive loss for learning the routing strategy (Section 3.3) and a sample-sample contrastive loss
for improving training stability (Section 3.4). The training and inference procedures are provided in
Algorithm 1.

3.1 Problem Formulation

Consider a set of LLMs {Mt : t = 1, . . . , T} and a training set Dtrain = {(xi, yi) : i = 1, . . . , n},
where xi is a query (i.e., question) and yi is its answer (i.e., ground truth). Usually, no single
LLM is universally suitable for all queries in Dtrain. Moreover, LLMs are diverse and have different
architectures (e.g., Mistral-based [23], LLaMA-based [42]), making it infeasible to merge all LLMs
into a single model [33, 21, 25]. In this paper, we study the problem of assembling LLMs by learning
a router to select the suitable LLM for each query. The router takes x as input and produces the
probability distribution of T LLMs being selected. As training and testing queries may come from
different data distributions, the learned router is expected to generalize well on both in-distribution
and out-of-distribution scenarios.

3



3.2 Scoring

To learn the router, we need to design a scoring method to assess the performance of LLMs on
queries. For an open-ended generation query xi (requiring a long answer, e.g., GSM8K [7], with an
example shown in Example 2), one can directly compare the ground truth yi with the output of the
LLM ŷ

(t)
i =Mt(xi) generated by greedy decoding. Though greedy decoding is simple and efficient,

its inherent shortsightedness often prevents it from discovering the optimal solution. Conversely,
sampling, like beam sampling [46], is an advanced approach that is widely used in practice as it
explores multiple alternatives in the search space, potentially leading to better results. We feed the
query xi to the LLMMt M times to obtain outputs {ŷ(t)i,m : m = 1, . . . ,M}. Then, we define the
score of LLMMt on the query xi as:

s
(t)
i =

1

M

M∑
m=1

evaluate(ŷ(t)i,m, yi), (1)

where evaluate(ŷ, y) gives 1 if the prediction ŷ is correct otherwise 0.

For a multiple-choice question xi with an option set Ai (e.g., MMLU [16], as an example shown in
Example 2), sampling is unnecessary as we can simply define the score based on the probability of
options, i.e.,

s
(t)
i =

 PMt (ŷ
(t)
i |xi)∑

a∈Ai
PMt (a|xi)

if ŷ
(t)
i = yi

0 otherwise
(2)

where PMt(a|xi) is the probability of option a predicting by the LLMMt. According to Eq. (2),
when the LLMMt outputs a correct option (i.e., ŷ(t)i = yi), we normalize the probability to make it
comparable across different LLMs, which will be used in Section 3.3; When the LLMMt generates
a wrong option, s(t)i is set to 0 to punishMt for xi. Based on the scores {s(t)i : t = 1, . . . , T}, we
introduce a sample-LLM contrastive loss in the next section.

Example 1

An open-ended question from GSM8K [7]:
Question: Tim has 30 less apples than Martha, and Harry has half as many apples as Tim. If
Martha has 68 apples, how many apples does Harry have?
Answer: Tim has 68-30 = 68-30=38 apples. Harry has 38/2 = 38/2=19 apples. #### 19

A multiple-choice question from MMLU [16]:
Question: An object is placed 100cm from a plane mirror. How far is the image from the object?
Options: A. 50cm B. 100cm C. 200cm D. 300cm
Answer: C

3.3 Sample-LLM Contrastive Loss

As illustrated in Figure 1, The proposed RouterDC consists of an encoder E(x;w) parameterized by
w (where in our experiments E(x;w) uses a small language model mDeBERTaV3-base [14]) to map
x into an embedding in Rp, and T learnable LLM embeddings {kt ∈ Rp : t = 1, . . . , T} for the T
LLMs. For a query xi, the RouterDC generates a selection probability distribution over T LLMs as

R(xi;θ) = softmax [sim(E(xi;w),k1), . . . , sim(E(xi;w),kT )] , (3)

where θ ≡ {w,k1,k2, . . . ,kT } denotes the set of the parameters in RouterDC, sim(·, ·) denotes the
cosine similarity, and softmax(·) denotes the softmax normalization.

One can train the router by minimizing the distance between the output of the router and a score distri-
bution over {s(t)i : t = 1, . . . , T}, i.e., minθ

∑
(xi,yi)∈Dtrain

KL
(
R(xi;θ), softmax[s(1)i , . . . , s

(T )
i ]

)
,

where KL(·, ·) is the Kullback-Leibler divergence [26]. This KL loss is recently used in [30] for
LLM routing, but we argue that it may not be a good proxy for training the router since the goal of
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Algorithm 1 Query-Based Router by Dual Contrastive Learning (RouterDC)

Input: training set Dtrain, LLMs {Mt : t = 1, . . . , T}, #positive LLMs K+, #negative LLMs K−,
#out-group queries H , #clusters N , hyper-parameter λ, mini-batch size b, and learning rate η;
learnable parameters θ: encoder E(·;w) and LLM embeddings {kt : t = 1, . . . , T};

training:
1: score LLMs for each sample (xi, yi) ∈ Dtrain and obtain {s(t)i : t = 1, . . . , T};
2: cluster training queries {xi : i = 1, . . . , n} into N groups;
3: repeat
4: sample a mini-batch of data B from Dtrain;
5: for (xi, yi) ∈ B do
6: obtain positive LLMs index set I+i and negative LLMs index set I−i ;
7: compute the sample-LLM contrastive loss Lsample-LLM(xi, yi;θ) by Eq. (4);
8: sample an in-group query x+

i and a set of H out-group queries X−
i from B;

9: compute the sample-sample contrastive loss Lsample-sample(xi;θ) by Eq. (5);
10: end for
11: L(B;θ) =

∑
(xi,yi)∈B Lsample-LLM(xi, yi;θ) + λ Lsample-sample(xi;θ);

12: θ ← θ − η∇θL(B;θ);
13: until converged.

inference:
14: sample a testing query x′;
15: t′ = argmaxt∈{1,...,T} sim(E(x′;w),kt);
16: ŷ′ =Mt′(x

′).

the router is to assign queries to top-performing LLMs instead of aligning the scores with R(xi;θ),
particularly for the bottom-performing LLMs.

We draw inspiration from contrastive learning [34, 22] and propose a sample-LLM contrastive loss
to learn the router. For a query xi, we construct its positive LLMs index set I+i and its negative
LLMs index set I−i based on the scores {s(t)i : t = 1, . . . , T} as: I+i consists of the indices of LLMs
corresponding to the top-K+ scores, while I−i consists of the indices of LLMs corresponding to the
bottom-K− scores with s

(t)
i < 0.5. Note that K+ can be larger than 1 (K+ = 3 in our experiments)

as there can be multiple LLMs that are suitable for a query in practice. We expect the router to pull
the query embedding E(xi;w) closer to the positive LLMs’ embeddings {kt+ : t+ ∈ I+i } while
pushing apart from the negative LLMs’ embeddings {kt− : t− ∈ I−i }. To this end, we propose the
sample-LLM contrastive loss as

Lsample-LLM(xi, yi;θ) =
∑

t+∈I+
i

− log
esim(E(xi;w),kt+

)

esim(E(xi;w),kt+
) +

∑
t−∈I−

i
esim(E(xi;w),kt− )

. (4)

3.4 Sample-Sample Contrastive Loss

We empirically find that training the router by minimizing the sample-LLM contrastive loss alone
is not stable (refer to Figure 12 in Section 4.4). The reason is that some similar queries can have
dissimilar embeddings and may be routed to different LLMs. To improve the robustness of the
router, we introduce a sample-sample contrastive loss to encourage the encoder to generate similar
embeddings for similar queries.

First, we cluster queries into multiple groups by unsupervised clustering. Specifically, we extract the
embeddings of all training queries using a pre-trained encoder (i.e., mDeBERTaV3-base [14]) and
transform them into low-dimensional vectors by the t-SNE algorithm [45]. Then the k-means cluster-
ing algorithm [32] is used to cluster these low-dimensional vectors into N groups {K1, . . . ,KN}.
Next, we construct a sample-sample contrastive loss to encourage samples in the same group to
have similar embeddings. Specifically, for a query xi ∈ Kj , we randomly select an in-group query
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x+
i ∈ Kj and an out-group set X−

i ⊂ {∪j′ ̸=jKj′} of H queries from the training mini-batch at each
iteration. Similar to the sample-LLM contrastive loss, we propose a sample-sample contrastive loss to
pull the embedding of xi closer to the embedding of x+

i while pushing it away from the embedding
of queries in X−

i . Formally, the sample-sample contrastive loss is formulated as

Lsample-sample(xi;θ) = − log
esim(E(xi;w),E(x+

i ;w))

esim(E(xi;w),E(x+
i ;w)) +

∑
x−
i ∈X−

i
esim(E(xi;w),E(x−

i ;w))
. (5)

3.5 Training and Inference

Training. We learn a router R(x;θ) by minimizing the final objective consisting of sample-LLM
and sample-sample contrastive losses, i.e.,

L(Dtrain;θ) =
∑

(xi,yi)∈Dtrain

Lsample-LLM(xi, yi;θ) + λ Lsample-sample(xi;θ), (6)

where λ > 0 is a hyper-parameter. In our experiments, λ is set to 1.

RouterDC contains less than 100M parameters (that is, the encoder model E(x;w) is small and the
number of parameters of LLM embeddings {k1, . . . ,kT } are negligible), thus it is parameter-efficient.
Moreover, training the router is computationally efficient as it does not require backpropagating the
gradients through the LLMs.

Inference. During inference, for each testing query x′, we compute R(x′;θ) and select the LLM
with the largest probability, i.e., t′ = argmaxt∈{1,...,T} sim(E(x′;w),kt). Then we generate the
prediction as ŷ′ =Mt′(x

′).

Compared with existing LLM assembling methods like voting [28] and cascade [2], which require
calling LLMs multiple times for a query, RouterDC is much more efficient as it only needs to call the
selected LLM once.

4 Experiments

4.1 Experimental Setup

Candidate LLMs. We choose seven open-source LLMs from HuggingFace1: (i) Mistral-7B [23]
is a general LLM released by the Mistral-AI team; (ii) MetaMath-Mistral-7B [50] is fine-tuned
on the MetaMathQA dataset [50]; (iii) zephyr-7b-beta [44] is an aligned version of Mistral-7B
using direct preference optimization [37] on a mix of publicly available, synthetic datasets; (iv) Chi-
nese-Mistral-7B [54] expands the vocabulary and incrementally pre-trains Mistral-7B on Chinese
corpus; (v) dolphin-2.6-mistral-7b [8] is fine-tuned from Mistral-7B and released by Cognitive
Computations; (vi) Llama-3-8B [42] is a general LLM developed by the Meta company; (vii) dol-
phin-2.9-llama3-8b [9] is fine-tuned from Llama-3-8B and released by Cognitive Computations. The
first five LLMs are Mistral-based, while the last two LLMs are Llama-3-based.

Datasets. We evaluate in various tasks: (i) MMLU [16] is a general benchmark that covers 57
subjects; (ii) GSM8K [7] is a mathematical benchmark with diverse grade school questions;
(iii) CMMLU [27] is a comprehensive Chinese benchmark that covers 67 subjects ranging from basic
to advanced professional levels; (iv) ARC-C [6] is a reasoning benchmark containing different
grade-school level questions; and (v) HumanEval [3] is a code completion benchmark consisting of
programming problems assessing language comprehension, algorithms, and simple mathematics. For
GSM8K, we use its default training and testing split. As the rest tasks do not have a default split,
we randomly split the dataset into training (70%) and testing (30%) sets. All the training sets are
unioned together to form the total training set Dtrain for learning the router. The learned router is then
evaluated on the testing set of in-distribution tasks.

We also evaluate the trained router on three out-of-distribution (OOD) tasks: (i) PreAlgebra [17],
which consists of basic university-level algebra problems; (ii) MBPP [1], which is a code benchmark
that consists of 1,000 crowd-sourced Python programming problems; and (iii) C-EVAL [20], which

1https://huggingface.co/
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Table 1: Testing accuracy (%) on in-distribution tasks. “Time” denotes the total inference time in
minutes. The best is in bold and the second-best is underlined.

MMLU GSM8K CMMLU ARC-C HumanEval Avg Time (m)

C
an

di
da

te
LL

M
s Mistral-7B [23] 62.14 36.71 43.83 49.43 28.98 44.22 6.94

MetaMath-Mistral-7B [50] 59.86 69.63 43.83 48.30 29.80 50.28 7.23
zephyr-7b-beta [44] 59.81 33.00 42.82 57.95 22.04 43.13 6.73
Chinese-Mistral-7B [54] 57.42 41.03 49.67 43.47 21.43 42.60 7.11
dolphin-2.6-mistral-7b [8] 60.53 52.38 43.71 52.56 45.10 50.86 6.91
Meta-Llama-3-8B [42] 64.59 47.76 51.77 49.43 26.73 48.06 6.33
dolphin-2.9-llama3-8b [9] 59.46 69.81 44.72 49.43 49.39 54.56 5.33

Voting [28] 63.30 67.39 47.48 50.85 42.85 54.37 46.59

R
ou

tin
g CosineClassifier 59.72 69.03 45.47 50.57 46.33 54.22 8.30

ZOOTER [30] 60.48 66.69 45.27 53.13 44.29 53.97 8.01
LoraRetriever (clustering) [52] 63.33 66.63 51.77 57.10 40.00 55.77 7.86
RouterDC 61.07 70.32 51.77 58.52 51.02 58.54 7.97

Table 2: Testing accuracy (%) on out-of-distribution tasks. “Time” denotes the total inference time in
minutes. The best is in bold and the second-best is underlined.

PreAlgebra MBPP C-EVAL Avg Time (m)

C
an

di
da

te
LL

M
s Mistral-7B [23] 24.80 37.90 46.43 36.38 4.31

MetaMath-Mistral-7B [50] 39.15 37.74 45.17 40.69 4.13
zephyr-7b-beta [44] 20.78 31.14 44.87 32.26 4.30
Chinese-Mistral-7B [54] 18.48 29.64 48.44 32.19 4.40
dolphin-2.6-mistral-7b [8] 29.28 44.86 45.10 39.75 3.20
Meta-Llama-3-8B [42] 27.67 43.02 52.01 40.90 3.95
dolphin-2.9-llama3-8b [9] 39.72 47.34 44.80 43.95 3.15

Voting [28] 39.03 41.60 48.50 43.04 27.43

R
ou

tin
g CosineClassifier 36.97 38.48 47.77 41.07 4.43

ZOOTER [30] 34.44 41.10 44.95 40.16 4.28
LoraRetriever (clustering) [52] 35.36 43.12 52.01 43.50 4.22
RouterDC 38.81 46.80 51.93 45.85 4.24

is a comprehensive Chinese evaluation benchmark spanning 52 diverse disciplines and four difficulty
levels.

Baselines. We compare RouterDC with the following baselines: (i) CosineClassifier, which treats
the routing problem as a multi-class classification (the top-1 LLM is the label) and trains a cosine
classifier on outputs of the encoder. CosineClassifier is equivalent to RouterDC with K+ = 1,
K− = T − 1, and λ = 0; (ii) Voting [28], which feeds the query to all LLMs and chooses the final
prediction by majority voting; (iii) ZOOTER [30], which trains a router by supervised learning
using rewards obtained by the scoring method in Section 3.2; (iv) LoraRetriever [52] designs a
routing strategy based on task identities, which are unavailable in practice and we replace them with
the cluster indices obtained by the clustering method in Section 3.4.

Implementation Details. By following [5], we use the Language Model Evaluation Harness
package [10] for evaluation. For open-ended generation questions, we query LLMs M = 10 times
by employing beam sampling with a temperature of 0.2 to calculate the score. For the router, we
adopt mDeBERTaV3-base [15] as the encoder E(x;w), which is a small language model containing
only 86M parameters. The dimension of each LLM embedding is set to 768. The hyper-parameters
K+,K−, H , and λ are set to 3, 3, 3, and 1, respectively. The number of clusters N is set to 5. The
router is trained for 1000 steps using the AdamW [29] optimizer with a learning rate of 5× 10−5, a
weight decay of 0.01, and a mini-batch size of 64. All experiments are run on NVIDIA A100 80GB
GPUs.

4.2 Main Results

In-Distribution Results. Table 1 shows the testing accuracy on five in-distribution tasks. As can
be seen, RouterDC achieves the highest average accuracy, surpassing the best individual LLM (i.e.,
dolphin-2.9-llama3-8b) by a large margin of 3.98%. RouterDC achieves accuracy improvements over
the top-performing individual model on three tasks, with an increase of +0.51% for GSM8K, +0.57%
for ARC-C, and +1.63% for HumanEval. Compared with ZOOTER and CosineClassifier, RouterDC
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Figure 5: Effects of λ.
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Figure 7: Effects of H .

consistently performs better on all the tasks, demonstrating that the proposed dual contrastive
losses can train a more effective router. Furthermore, RouterDC achieves an average accuracy
improvement of +2.77% over LoraRetriever, validating the usefulness of the sample-LLM contrastive
loss. Additionally, RouterDC, with only 28.3 minutes for training, outperforms Voting on four of five
tasks and is about 6× faster in inference.

Out-of-Distribution Results. Table 2 shows the testing accuracy on three OOD tasks. As can
be seen, the proposed RouterDC again achieves the highest accuracy on average, exceeding the
best-performing individual LLM (i.e., dolphin-2.9-llama3-8b) by a large margin of 1.9%. For each
task, RouterDC has roughly comparable performance with the best-performing individual LLM,
e.g., 38.81 vs. 39.72 on PreAlgebra, 46.80 vs. 47.34 on MBPP, and 51.93 vs. 52.01 on C-EVAL,
which demonstrates that RouterDC can select suitable LLMs for queries from OOD tasks. Among all
routing methods, only our RouterDC can surpass dolphin-2.9-llama3-8b, confirming that RouterDC
has a better generalization ability. Compared with Voting, RouterDC performs better on all tasks
except PreAlgebra, on which they are comparable.

4.3 Sensitivity Analysis

Effects of λ. We conduct an experiment to study the effect of λ in Eq. (6) w.r.t. the testing accuracy.
According to Figure 5 (the detailed results are in Table 4 of Appendix A), we can see that using
two contrastive losses together (i.e., λ = 1) achieves better overall performance than using the
sample-LLM contrastive loss alone (i.e., λ = 0). Moreover, the overall performance of RouterDC is
insensitive to a wide range of λ ∈ [0.5, 5], making it easy to choose the value of λ in practice.

Effects of #clusters N . We conduct an experiment to study the effect of the number of clusters (i.e.,
N ) used in the sample-sample contrastive loss w.r.t. the testing accuracy. According to Figure 6, we
can find that RouterDC is insensitive to a wide range of N ∈ [4, 9]. Moreover, increasing N leads to
higher average accuracy when N is small (≤ 4), but the accuracy saturates quickly.

Effects of #out-group queries H . Figure 7 shows the testing accuracy with different H’s. When H =
0, Lsample-sample is a constant, which means using Lsample-LLM alone and is not the best configuration.
Moreover, the values of H ≥ 1 play a negligible influence on the average performance of RouterDC.

Effects of K+ and K−. To investigate the sensitivity of K+ and K−, we conduct an experiment
using the setting in Section 4.1. Figure 8 shows the average testing accuracy w.r.t. K+ and K−
within the in-distribution setting. As can be seen, for all the configurations, RouterDC outperforms
the best individual LLM (i.e., 54.56% for dolphin-2.9-llama3-8b in Table 1). Note that among all the
configurations, RouterDC (with K+ = 1 and K− = 6) performs worse, showing that selecting only
the top-1 LLM as positive and other LLMs as negative is inappropriate for learning the router.
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Figure 8: Average
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K+ and K− on five
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4.4 Analysis

Does RouterDC select the suitable LLM for each query? To answer this question, we analyze
the assignment of testing queries to LLMs in each task. Figure 9 shows the distribution, which has
a clear structure on both in-distribution and out-distribution tasks. For example, most GSM8K and
PreAlgebra queries are assigned to MetaMath-Mistral-7B and dolphin-2.9-llama3-8b, which have
strong mathematical ability (Tables 1 and 2). To further investigate the routing rule of RouterDC, we
compute the average cosine similarity between LLMs and the query embeddings for each task. As
shown in Figure 10, the similarity matrix is roughly aligned with the assignment matrix in Figure 9.
For example, embeddings of GSM8K and PreAlgrebra queries are more similar to MetaMath-Mistral-
7B and dolphin-2.9-llama3-8b than to other LLMs.

Visualization of Training Queries. Figure 11 shows the t-SNE visualization [45] of the embeddings
of training queries using a pre-trained encoder mDeBERTaV3-base [14]. As shown, except for
HumanEval, all tasks have a clear clustering structure, confirming that using unsupervised clustering
in Section 3.4 is reasonable.

Effectiveness of Lsample-sample. We conduct experiments to study the effectiveness of Lsample-sample
(Eq. (5)). Figure 12 shows the training and testing accuracy curves of RouterDC (w/ or w/o
Lsample-sample) on GSM8K. As can be seen, the training curve of RouterDC (w/o Lsample-sample) exhibits
considerable oscillation, whereas that of RouterDC is much more stable. Figure 14(a) in Appendix B
shows t-SNE visualization of training query embeddings extracted by the trained encoder of Rou-
terDC (w/o Lsample-sample). As can be seen, query embeddings belonging to different tasks are roughly
mixed together. Example 2 in Appendix B provides two similar GSM8K queries, which both require
basic calculation of shopping costs. Their embeddings have very low similarity (only −0.4589) when
the router is trained by Lsample-LLM alone. After integrating Lsample-sample, training query embeddings
have a clear cluster structure (Figure 14(b)) with the similarity between these two example queries
increases to 0.9982. Furthermore, RouterDC achieves higher testing accuracy than its counterpart,
verifying the effectiveness of Lsample-sample.

Routing to Different Numbers of LLMs. We evaluate the performance of RouterDC when the
number of LLMs increases. Figure 13 shows the testing accuracy on five in-distribution tasks. As can
be seen, adding LLMs consistently enhances the average accuracy. Table 7 in Appendix A shows the
detailed results and configurations.

Robustness to LLM Losses during Inference. In a production environment, the loss of model
servers is sometimes unavoidable due to various reasons such as network problems, thus placing
crucial requirements on the robustness of the router. We conduct an experiment to validate the
robustness of RouterDC by removing an LLM during inference. Table 3 shows the testing accuracy
on five in-distribution tasks. We can see that RouterDC reliably withstands the loss of any single
LLM. The robustness is attributed to the fact that multiple LLMs (with top scores) are chosen as
positive labels in the sample-LLM contrastive loss, and they can be regarded as each other’s backup.

5 Conclusions

In this paper, we study the problem of training a router to assemble LLMs. We propose RouterDC
to learn a query-based router using two novel contrastive losses (i.e., the sample-LLM and sample-
sample contrastive losses). Experimental results show that RouterDC effectively assembles LLMs
and outperforms individual top-performing LLMs as well as existing routing methods on both in-

9



Table 3: Robustness of RouterDC to LLM losses during inference.
MMLU GSM8K CMMLU ARC-C HumanEval Avg

All 61.07 70.32 51.77 58.52 51.02 58.54

w/o Mistral-7B 62.26 70.32 51.77 58.52 50.41 58.66
w/o MetaMath-Mistral-7B 60.93 69.81 51.77 57.67 51.02 58.24
w/o zephyr-7b-beta 61.19 70.32 51.77 53.13 51.02 57.49
w/o Chinese-Mistral-7B 61.07 70.32 51.77 58.52 51.02 58.54
w/o dolphin-2.6-mistral-7b 60.95 70.32 51.77 58.52 51.02 58.52
w/o meta-llama/Meta-Llama-3-8B 60.95 70.32 46.30 58.52 51.02 57.42
w/o dolphin-2.9-llama3-8b 61.36 69.41 51.74 57.95 46.53 57.40

distribution and out-distribution tasks. As the proposed two contrastive losses are general, we consider
applying them to other routing problems in future work.
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A Full Results of Figures 5, 6, 7, and 13

Table 4 is the full results of Figure 5 (i.e., the testing accuracy with different λ’s). As can be seen,
RouterDC is insensitive to a wide range of λ ∈ [0.5, 5].

Table 4: Testing accuracy (%) with different λ’s.
λ MMLU GSM8K CMMLU ARC-C HumanEval Avg

0 63.21 68.87 49.27 49.43 51.84 56.52
0.1 61.14 70.00 47.28 49.43 54.49 56.47
0.2 60.41 69.20 47.14 54.83 52.45 56.81
0.5 62.33 71.16 50.88 53.69 52.04 58.02
1 61.07 70.32 51.77 58.52 51.02 58.54
2 61.07 70.55 51.77 57.95 49.18 58.11
5 61.22 69.91 51.77 58.24 52.45 58.72
10 60.48 70.07 51.74 58.52 46.53 57.47

Table 5 is the full results of Figure 6 (i.e., the testing accuracy with different #clusters N ’s). We can
see that RouterDC is insensitive to a wide range of N ∈ [4, 9].

Table 5: Testing accuracy (%) with different N ’s.
#Clusters MMLU GSM8K CMMLU ARC-C HumanEval Avg

2 59.58 69.70 43.88 48.30 45.92 53.48
3 59.96 71.98 48.78 49.72 53.27 56.74
4 60.43 70.61 51.19 59.37 51.22 58.56
5 61.07 70.32 51.77 58.52 51.02 58.54
6 61.67 70.40 51.10 56.82 51.42 58.28
7 61.78 70.05 51.60 57.10 55.10 59.13
8 62.02 70.32 51.28 55.68 53.06 58.47
9 62.14 69.63 51.74 58.24 52.45 58.84
10 61.90 70.84 51.74 58.24 45.31 57.61
15 60.41 70.14 51.77 57.95 47.14 57.48
20 61.55 70.00 51.77 58.24 42.04 56.72
25 61.33 69.63 51.71 57.67 42.85 56.64
30 61.62 69.65 51.74 57.67 40.61 56.26

Table 6 is the full results of Figure 7 (i.e., the testing accuracy with different #out-group queries H’s).
As we can see, RouterDC is robust across various H’s, except for H = 0, which is equivalent to
using Lsample-sample alone.

Table 6: Testing accuracy (%) with different H’s.
H MMLU GSM8K CMMLU ARC-C HumanEval Avg

0 63.21 68.87 49.27 49.43 51.84 56.52
1 61.67 71.43 49.64 57.10 54.49 58.87
2 62.26 70.24 51.60 58.24 49.59 58.38
3 61.07 70.32 51.77 58.52 51.02 58.54
4 60.98 70.36 51.74 57.95 52.24 58.66
5 61.31 70.49 51.74 57.95 52.65 58.83
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Table 7 is the full results of Figure 13 (i.e., the testing accuracy with #LLMs). As can be seen, adding
LLMs consistency enhances the average accuracy.

Table 7: Testing accuracy (%) with #LLMs.
#LLMs MMLU GSM8K CMMLU ARC-C HumanEval Avg

Mistral-7B 1 62.14 36.71 43.83 49.43 28.98 44.22
+MetaMath-Mistral-7B 2 61.07 69.63 43.83 48.30 30.62 50.69
+zephyr-7b-beta 3 59.98 69.63 42.82 57.67 28.78 51.78
+Chinese-Mistral-7B 4 60.63 69.42 49.67 57.67 28.98 53.27
+dolphin-2.6-mistral-7b 5 60.65 69.33 49.67 57.95 45.10 56.54
+meta-llama/Meta-Llama-3-8B 6 62.64 69.34 51.71 57.95 44.49 57.23
+dolphin-2.9-llama3-8b 7 61.07 70.32 51.77 58.52 51.02 58.54

B Detailed Results for Section 4.4

Example 2

Query 1: Mary does her grocery shopping on Saturday. She does her shopping only at a specific
store where she is allowed a credit of $100, which must be paid in full before her next shopping
trip. That week she spent the full credit limit and paid $15 of it on Tuesday and $23 of it on
Thursday. How much credit will Mary need to pay before her next shopping trip?

Query 2: Betty is saving money for a new wallet which costs $100. Betty has only half
of the money she needs. Her parents decided to give her $15 for that purpose, and her grandparents
twice as much as her parents. How much more money does Betty need to buy the wallet?

MMLU
GSM8K
CMMLU
ARC-C
HumanEval

(a) w/o Lsample-sample.

MMLU
GSM8K
CMMLU
ARC-C
HumanEval

(b) w/ Lsample-sample.

Figure 14: t-SNE visualization of training query embeddings extracted by the learned encoder.

C Effectiveness of #training samples

To further investigate the sensitivity of the number of training samples used RouterDC, we conduct
an experiment to study the performance of RouterDC with different numbers of training samples per
task. As can be seen from Figure 15, the testing accuracy saturates quickly, indicating that a small
number of samples is sufficient for learning the router (e.g., 100 samples per task). Moreover, with
only 30 samples per task, RouterDC already outperforms the previous SOTA overall (57.21 vs 55.77),
demonstrating that our RouterDC does not require a large amount of labeled data for training.

D Discussions on Availability of Task Identity

In Section 3.4, we cluster samples into N groups and apply the sample-sample contrastive training
to encourage similar queries with similar embeddings. However, when the task identity is available
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Figure 15: Testing accuracy with different numbers of training samples.

in the training dataset, the samples can be naturally grouped into different tasks. To explore the
performance of RouterDC with additional task identity, we replace the {K1, . . . ,KN} with the groups
of different tasks and conduct experiments on five in-distribution tasks. Table 8 shows the testing
accuracy comparison between RouterDC and its variant. As can be seen, RouterDC is comparable to
RouterDC (w/ task identity), showing the effectiveness of the unsupervised clustering.

Table 8: Testing accuracy of RouterDC w/ or w/o task identity.
MMLU GSM8K CMMLU ARC-C HumanEval Avg

RouterDC 61.07 70.32 51.77 58.52 51.02 58.54
RouterDC (w/ task identity) 64.49 69.63 51.77 57.95 49.39 58.65

E Discussions on Single Task Setting

To validate that RouterDC is a queried-based router rather than a task-wise router, we conduct an
experiment in a single task setting, i.e., we train the router on the training set of HumanEval and
evaluate it on the testing set. The single task setting is an edge case where all queries may contain
the same task information. Hence, the router needs to learn how to route queries appropriately
based on the query itself instead of some possible task information contained in the query. Table 9
reports the testing accuracy. As can be seen, RouterDC largely outperforms the best candidate LLM
(i.e., dolphin-2.9-llama3-8b) and existing routing methods, demonstrating that the router can select
appropriate LLMs for queries based on query characteristics.

Table 9: Testing accuracy (%) on HumanEval task. The best is in bold.
Method HumanEval

Mistral-7B 28.98
MetaMath-Mistral-7B 29.80
zephyr-7b-beta 22.04
Chinese-Mistral-7B 21.43
dolphin-2.6-mistral-7b 45.10
Meta-Llama-3-8B 26.73
dolphin-2.9-llama3-8b 49.39

ZOOTER 39.38
CosineClassifier 52.45
RouterDC 56.32
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F Discussions on the Distant OOD Task

To further explore the generalization ability of RouterDC, we evaluate the learned router on one more
OOD task: JavaScript [53], which aims to generate JavaScript code to solve problems. Different from
HumanEval, which generates Python code to solve problems, JavaScript can be viewed as a distant
OOD task. Table 10 reports the testing accuracy. As can be seen, RouterDC outperforms existing
routing methods by a large margin, demonstrating that our RouterDC is more effective in routing
queries of the distant OOD task.

Table 10: Testing accuracy (%) on JavaScript task. The best is in bold.
JavaScript

Mistral-7B 29.88
MetaMath-Mistral-7B 31.83
zephyr-7b-beta 11.71
Chinese-Mistral-7B 17.68
dolphin-2.6-mistral-7b 45.00
Meta-Llama-3-8B 37.07
dolphin-2.9-llama3-8b 53.84

ZOOTER 41.64
CosineClassifier 37.32
RouterDC 48.66

G Effectiveness of Lsample-sample for ZOOTER

We conduct experiments to study whether the proposed sample-sample contrastive loss is useful for
ZOOTER. Table 11 and Table 12 shows the testing accuracy for the ID and OOD scenarios. As
can be seen, integrating Lsample-sample into ZOOTER leads to improvements of +1.52% and +0.81%
for ID and OOD, respectively, demonstrating that the proposed sample-sample contrastive loss is
beneficial for ZOOTER.

Table 11: Testing accuracy (%) of ZOOTER w/ Lsample-sample on in-distribution tasks.
MMLU GSM8K CMMLU ARC-C HumanEval Avg

ZOOTER 60.48 66.69 45.27 53.13 44.29 53.97
ZOOTER (w/ Lsample-sample) 60.15 69.71 46.59 54.26 46.73 55.49 (+1.52)

Table 12: Testing accuracy (%) of ZOOTER w/ Lsample-sample on out-of-distribution tasks.
Pre-Algebra MBPP C-EVAL Avg

ZOOTER 34.44 41.10 44.95 40.16
ZOOTER (w/ Lsample-sample) 36.05 39.84 47.03 40.97 (+0.81)

H Effectiveness of punishing s
(t)
i

As mentioned in Section 3.2, we set s(t)i = 0 when the LLMMt generates a wrong option for the
multiple-choice question xi. We perform an experiment to verify the effectiveness of such a design.
Table 13 shows the testing accuracy on five in-distribution tasks. As can be seen, punishing s

(t)
i

performs better on average.

I Disccusions on Incorporating Cost

As costs can also be an important metric to evaluate LLMs, we conduct experiments on two tasks
(i.e., GSM8K and MBPP) of RouterBench [18] to consider the LLM costs. Specifically, we modify
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Table 13: Testing accuracy (%) of RouterDC with or without setting s
(t)
i to 0 for incorrect LLMs.

MMLU GSM8K CMMLU ARC-C HumanEval Avg

w/o punishing s
(t)
i 61.05 70.32 49.67 56.53 52.45 58.00

w/ punishing s
(t)
i 61.07 70.32 51.77 58.52 51.02 58.54

the score s(t)i to s
(t)
i + c

(t)
i , where c(t)i is the cost of the query xi using the tth LLM. Figure 16 shows

that RouterDC is more cost-effective than CosineClassifier and ZOOTER in both tasks.0.00 0.25 0.50 0.75 1.00 1.25
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Figure 16: Testing accuracy with different costs on RouterBench.

J Limitations

Due to the limited computational resources, we only evaluate RouterDC with candidate LLMs that
have relatively small numbers of parameters (i.e., 8B for LLaMA-based LLMs and 7B for Mistral-
based LLMs). However, there are many LLMs with more parameters and stronger capabilities
available for public use (e.g., LLaMA-2-70B [43] and Mistral-8x7B [23]), making it reasonable to
apply the RouterDC to these more capable but expensive models.

Moreover, though RouterDC is designed as a query-based router, the framework can be extended to
the chat context, e.g., selecting LLMs based on the recent conversation.

We leave the investigation of such scenarios to future work.
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