Effective Meta-Regularization by Kernelized Proximal Regularization
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Introduction MetaProx Algorithm Few-shot Regression on QMUL
- Deep networks are data-hungry, and massive training samples are re- : Table 2: Average MSE (with 95% confidence intervals) of few-shot regression on QMUL
! Algorithm 3 MetaProx. (10-shot). MetaProx with the learnable fq reduces the errors of MetaOptNet-RR by half.

quired to avoid overfitting. To reduce the labor-intensive and time- : _ _
consuming process of data labeling, meta-learning aims to extract Rleq;}“'i‘ Stfl’PQSlze 77t’Tb3tCh size b; method in-range out-of-range
meta-knowledge from seen tasks to accelerate learning on unseen - ort = 4,484,700, €0 Feature Transfer 0.22 £ 0.03 0.18 £ 0.01

e 2:  sample a batch B; of tasks from 7 ;
tasks with limited samples. A it CMAML 021001 SO0
‘ g + . . . .
« One representative approach is called meta-regularization, in which ‘5‘3 for 7 € llgtN do ] X o DKT + Spectral 0.10 £ 0.02 0.11 £ 0.02
the base learner learns the task-specific model by minimizing a reg- ‘ z; = NN(x; ¢;) for eac (Xi’yri) < o . Meta-MinibatchProx — 0.171 4 0.0220.193 4 0.025
. . . . 6: fr(z;a) = fo,(z) + K(Z-,z) " o denote the task model w.r.t. dual variables; MetaOptNet-RR  0.021 £ 0.007  0.039 4= 0.009
ularized loss. Recently, Denevi et al. [1] study a linear model with N o mint > ((fo(zi:0), yi) + 0 K (Zr. Z ) MetaProx (proposed) 0.012 = 0.003 0.020 - 0.005
efficient closed-form solution. However, extending to nonlinear models | r = A8MMa 2 (e yaes, PTG ) U T ' ' ' '
requires computing the meta-gradient using matrix inversion, which can S: i'ff: D e, Y (0.,00)0(Y,y), where § = fr(z; a-) and z = NN(x; ¢y );
be infeasible for large models like neural networks [2]. - endlor ex  u: . .
10:  meta-learner: (611, @ri1) = (01, 1) — F > s, 87 Few-shot Classification on mini-ImageNet
« To introduce nonlinearity to the base learner, MetaOptNet [3] uses ker- 11: end for
nel trick and aCh'eveS. the State'Of'th_e'art performance. However, its Table 3: Accuracies (with 95% confidence intervals) of 5-way few-shot classification
base learner uses a Tikhonov regularizer rather than a learnable prox- In experiments, (i) in regression, K is the linear kernel and fg(z) = 0 'z; (i) in classification, K is the using Conv4.
imal regularizer as in meta-regularization methods. cosine kernel, and fy is a weighted prototype classifier on £, where @ is the weight. ethod shot _ 5-shot
* In this paper, we propose a kernel-based algorithm (called MetaProx) : _ MAML 48.74+1.8 63.1£0.9
to meta-learn a proximal regularizer for a nonlinear base learner. Few-shot Regression on Sine and Sale FOMAML 4814+ 1.8 63.240.9
REPTILE 50.0 + 0.3 66.0 £+ 0.6
O A h IMAML 49.0 &+ 1.8 —
ur pproac MAML iIMAML Meta-MinibatchProx MetaOptNet-RR MetaProx Meta-MinibatchProx  50.8 = 0.9 67.4 0.9
: 6 z = ANIL 46.7+04 61.54+0.5
R2D2 495+0.2 65.440.3
> > > > ProtoNet 49.440.8 68.240.7
* Notations: 0 4 0 4 0o 4 0 4 MetaOptNet-SVM(lin) 49.84+0.9 66.9 4+ 0.7
| | N g, g g, g, MetaOptNet-SVM(cos) 50.1+0.9 67.2 4 0.6
— T is a collection of tasks for meta-training. Each task 7 € 7 con- g g o o MetaProx (proposed) 52.4 +1.0 68.8 £ 0.8
tains a support set S; and a query set Q- (ns = |S-|). : — . ) : ’
— An input x is mapped to z — NN(X; ¢> in an embedding space &. \ L 1 WA Ta!:]le ; AI(\)ICL;_F?SIGS (with 95% confidence intervals) of 5-way few-shot classification
4 — [Z1T3 . ;Z;JL—], where Z; = NN(XZ'; qb) for X; € S >0 500 1000 °% /500 1000 °7 /500 1000 ° 500 1000 Using riesivet-ie.
S training time (s) training time (s) training time (s) training time (s) method 1-shot 5-shot
— K is a base kernelon & x &, H is the corresponding RKHS. . ; . 2 : 2 : 2
P 9 (a). 2-shot, O¢ = 0 (b) 2-shot, O¢ = 1 (C) 5-shot, O¢ = 0 (d). 5-shot, O¢ = 1 FOMAML 57414+ 0.71 72.12 + 0.54
* The problem in the inner loop is: Figure 1: Convergence curves for few-shot sinusoid regression. MetaProx converges much faster and better than the ANIL 59.66 £ 0.68  73.28 +0.49
\ non-kernel-based methods (MAML, iIMAML and Meta-MinibatchProx). In the 2-shot settings, MetaProx converges to a loss ProtoNet 59.25 £0.64 75.60 £ 0.48
— : N o) L 2 2 smaller than that of MetaOptNet-RR. MetaOptNet-SVM(lin)  62.31 +0.64 78.21 & 0.42
fr = IO ) s ) Sn (A (2),yi) + S = Jellg: MetaOptNet-SVM(cos) 62.75 £ 0.42  78.68 = 0.24

MetaProx (proposed) 63.82 +0.23 79.12 £ 0.18
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5.0 ' As can be seen from Table 3 and Table 4, compared with MetaOptNet-
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- By representer theorem, f(-; o) = fo(-) + K(Z+,-) " ar.
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- Meta-Regularization by Kernelized Proximal Regularization: oo S\ AV, oo SVM, MetaProx performs better due to the learnable regularizer.
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(0,0) < (0,0) — 77< z): V(e,qb)g(fT(Z; ar),y). (outer) >’ >\ 1. We proposed an effective meta-regularization algorithm (MetaProx) by
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kernelized proximal regularization.
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- Advantages:
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2. MetaProx combines deep kernel and meta-regularization. By reformu-
lating the problem in the dual space, a learnable proximal regularizer
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" gtgr kSEnFelkg):;eeT,Sfons:ir{g Ee?ng?,c;znismn?ﬁniggs (?[Ellljr;,e?\;lg;rgre;)s( Ei r(ez): :ik Tlf;i =r0 on: T n:f)t' thkt_:’? T(l - ,tfg_;ftis:f’,%_:; ot (o :}?;a:kf’_aé N it.n IS i.ntroduced to the base learner. The meta-parameters in the regu-
learns a meta-regularization for a nonlinear base learner. Mgtu: ' |I uso'f.t et% e‘:’s'o : WO eal‘l esting tasks 7, and 7, with different o¢'s in 2-shot (a—d) and 5-shot (e-h) settings. larizer and network are updated by the meta-learner.

etaProx always fits the target curve well.

2. fg in the base learner is learnable. By setting fg = 0, MetaProx 3. Extensive experiments on standard datasets for regression and clas-
recovers MetaOptNet [3]. Experiment results demonstrate that sification verify the effectiveness of the proposed meta-regularization
MetaProx significantly outperforms MetaOptNet, which verifies the Taple 1: Average MSE (with 95% confidence intervals) of few-shot regression on the Sine and Sale datasets. MetaProx algorithm.
effectiveness of a learnable proximal regularizer. (with the learned /o) performs better than MetaOptNet-RR.

3. For square loss, ar = (I + K(Z7,Z;))" Yyr — fo(Z;)) has an _ Sine (2_Sh0t)_ _ Sine (5_Sh0t)_ Sale
efficient closed-form solution. For general losses, the dual problem noisefree  noisy  noisefree  noisy  |1-shot 5-shot Reference
's convex and can be solved effiCiently’ as the size of a Is very Comhr;:&t/lean 1112481 j:: 8(1); leg? i 8(1);37 gi? j:: 882 lezfé i 882 8828 gggg [1] G. Denevi, C. Ciliberto, D. Stamos, and M. Pontil. Learning to learn around a common mean. In NeurlPS 2018
Sma” (Only ns) Though MetaPrC.)X SFI” reqUIreS matrIX inversion in IMAML 1:12 + 0:11 1:84 + 0:10 0:38 + 0:02 1:02 + 0:05 0:068 0:063 [2] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradients. In NeurlPS 2019.
Computlng meta-gradlents, the SIz€ 1S Only s % Ttss mUCh Sma”er Meta-MinibatchProx 1.15£0.08 1.87 + 0.09 0.37 4 0.02 1.01+£0.03 | 0.081  0.064 [3] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex optimization. In CVPR 2019.

than Ng X N in IMAML [2]. MetaOptNet-RR  0.18 £0.01 0.794+0.01  0.01 £0.00 0.19£0.01 | 0.088 0.068
MetaProx (proposed) 0.11 £+ 0.01 0.43 +0.01 0.01+0.00 0.13 +0.01 | 0.061 0.060




