

Introduction

- Deep networks are data-hungry, and massive training samples are required to avoid overfitting. To reduce the labor-intensive and timeconsuming process of data labeling, meta-learning aims to extract meta-knowledge from seen tasks to accelerate learning on unseen tasks with limited samples.
- One representative approach is called **meta-regularization**, in which the base learner learns the task-specific model by minimizing a regularized loss. Recently, Denevi et al. [1] study a linear model with efficient closed-form solution. However, extending to nonlinear models requires computing the meta-gradient using matrix inversion, which can be infeasible for large models like neural networks [2].
- To introduce nonlinearity to the base learner, MetaOptNet [3] uses kernel trick and achieves the state-of-the-art performance. However, its base learner uses a Tikhonov regularizer rather than a learnable proximal regularizer as in meta-regularization methods.
- In this paper, we propose a kernel-based algorithm (called **MetaProx**) to meta-learn a proximal regularizer for a nonlinear base learner.

- Notations:
 - \mathcal{T} is a collection of tasks for meta-training. Each task $\tau \in \mathcal{T}$ contains a support set S_{τ} and a query set Q_{τ} $(n_s = |S_{\tau}|)$.
 - An input x is mapped to $z = NN(x; \phi)$ in an embedding space \mathcal{E} . $\mathbf{Z}_{\tau} = [\mathbf{z}_1^{\top}; \ldots; \mathbf{z}_{n_s}^{\top}]$, where $\mathbf{z}_i = \mathsf{NN}(\mathbf{x}_i; \boldsymbol{\phi})$ for $\mathbf{x}_i \in S_{\tau}$.
 - \mathcal{K} is a base kernel on $\mathcal{E} \times \mathcal{E}$, \mathcal{H} is the corresponding RKHS.
- The problem in the inner loop is:

$$f_{\tau} \equiv \underset{f \in \mathcal{H}}{\operatorname{argmin}} \sum_{(\mathbf{x}_{i}, y_{i}) \in S_{\tau}} \ell(f(\mathbf{z}_{i}), y_{i}) + \frac{\lambda}{2} \|f - f_{\theta}\|_{\mathcal{H}}^{2}.$$

- By representer theorem, $f_{\tau}(\cdot; \alpha_{\tau}) = f_{\theta}(\cdot) + \mathcal{K}(\mathbf{Z}_{\tau}, \cdot)^{\top} \alpha_{\tau}$.
- Meta-Regularization by Kernelized Proximal Regularization:

$$\boldsymbol{\alpha}_{\tau} \equiv \min_{\boldsymbol{\alpha}} \sum_{(\mathbf{x}_i, y_i) \in S_{\tau}} \ell(f_{\tau}(\mathbf{z}_i; \boldsymbol{\alpha}), y_i) + \boldsymbol{\alpha}^{\top} \mathcal{K}(\mathbf{Z}_{\tau}, \mathbf{Z}_{\tau}) \boldsymbol{\alpha} \quad \text{(inner)}$$

$$\boldsymbol{\theta}, \boldsymbol{\phi}) \leftarrow (\boldsymbol{\theta}, \boldsymbol{\phi}) - \eta \sum_{(\mathbf{x}, y) \in Q_{\tau}} \nabla_{(\boldsymbol{\theta}, \boldsymbol{\phi})} \ell(f_{\tau}(\mathbf{z}; \boldsymbol{\alpha}_{\tau}), y).$$
 (outer)

- Advantages:
 - 1. After kernel extension, f_{θ} is a function in \mathcal{H} . For nonlinear kernels (e.g., RBF kernel, cosine kernel), f_{θ} is nonlinear, thus, MetaProx learns a meta-regularization for a **nonlinear** base learner.
 - 2. f_{θ} in the base learner is **learnable**. By setting $f_{\theta} = 0$, MetaProx recovers MetaOptNet [3]. Experiment results demonstrate that MetaProx significantly outperforms MetaOptNet, which verifies the effectiveness of a learnable proximal regularizer.
 - 3. For square loss, $\alpha_{\tau} = (\mathbf{I} + \mathcal{K}(\mathbf{Z}_{\tau}, \mathbf{Z}_{\tau}))^{-1}(\mathbf{y}_{\tau} f_{\theta}(\mathbf{Z}_{\tau}))$ has an efficient closed-form solution. For general losses, the dual problem is convex and can be solved efficiently, as the size of α is very small (only n_s). Though MetaProx still requires matrix inversion in computing meta-gradients, the size is only $n_s \times n_s$, much smaller than $n_{\phi} \times n_{\phi}$ in iMAML [2].

Effective Meta-Regularization by Kernelized Proximal Regularization

Weisen Jiangot, James T. Kwokt, Yu Zhango Southern University of Science and Technology
[†]Hong Kong University of Science and Technology

MetaProx Algorithm

Algorithm 3 MetaProx.

In experiments, (i) in regression, \mathcal{K} is the linear kernel and $f_{\theta}(z) = \theta^{\top} z$; (ii) in classification, \mathcal{K} is the cosine kernel, and f_{θ} is a weighted prototype classifier on \mathcal{E} , where θ is the weight.

Figure 1: Convergence curves for few-shot sinusoid regression. MetaProx converges much faster and better than the non-kernel-based methods (MAML, iMAML and Meta-MinibatchProx). In the 2-shot settings, MetaProx converges to a loss smaller than that of MetaOptNet-RR.

Figure 2: Sinusoid regression: Two meta-testing tasks τ_1 and τ_2 with different σ_{ε} 's in 2-shot (a–d) and 5-shot (e–h) settings. MetaProx always fits the target curve well.

Table 1: Average MSE (with 95% confidence intervals) of few-shot regression on the *Sine* and *Sale* datasets. MetaProx (with the learned f_{θ}) performs better than MetaOptNet-RR.

	<i>Sine</i> (2-shot)		<i>Sine</i> (5-shot)		Sale	
	noise-free	noisy	noise-free	noisy	1-shot	5-shot
CommonMean	4.58 ± 0.07	4.59 ± 0.07	4.29 ± 0.06	4.31 ± 0.06	0.090	0.074
MAML	1.24 ± 0.12	1.91 ± 0.13	0.41 ± 0.03	1.15 ± 0.05	0.069	0.063
iMAML	1.12 ± 0.11	1.84 ± 0.10	0.38 ± 0.02	1.02 ± 0.05	0.068	0.063
Meta-MinibatchProx	1.15 ± 0.08	1.87 ± 0.09	0.37 ± 0.02	1.01 ± 0.03	0.081	0.064
MetaOptNet-RR	0.18 ± 0.01	0.79 ± 0.01	0.01 ± 0.00	0.19 ± 0.01	0.088	0.068
MetaProx (proposed)	0.11 ± 0.01	0.43 ± 0.01	0.01 ± 0.00	0.13 ± 0.01	0.061	0.060

Few-shot Regression on QMUL

Table 2: Average MSE (with 95% confidence intervals) of few-shot regression on QMUL (10-shot). MetaProx with the learnable f_{θ} reduces the errors of MetaOptNet-RR by half.

method	in-range	out-of-range
Feature Transfer	0.22 ± 0.03	0.18 ± 0.01
MAML	0.21 ± 0.01	0.18 ± 0.02
DKT + RBF	0.12 ± 0.04	0.14 ± 0.03
DKT + Spectral	0.10 ± 0.02	0.11 ± 0.02
Meta-MinibatchProx	0.171 ± 0.022	0.193 ± 0.025
MetaOptNet-RR	0.021 ± 0.007	0.039 ± 0.009
MetaProx (proposed)	0.012 ± 0.003	0.020 ± 0.005

Few-shot Classification on *mini-ImageNet*

Table 3: Accuracies (with 95% confidence intervals) of 5-way few-shot classification using Conv4.

method	1-shot	5 -shot
MAML	48.7 ± 1.8	63.1 ± 0.9
FOMAML	48.1 ± 1.8	63.2 ± 0.9
REPTILE	50.0 ± 0.3	66.0 ± 0.6
iMAML	49.0 ± 1.8	—
Meta-MinibatchProx	50.8 ± 0.9	67.4 ± 0.9
ANIL	46.7 ± 0.4	61.5 ± 0.5
R2D2	49.5 ± 0.2	65.4 ± 0.3
ProtoNet	49.4 ± 0.8	68.2 ± 0.7
MetaOptNet-SVM(lin)	49.8 ± 0.9	66.9 ± 0.7
MetaOptNet-SVM(cos)	50.1 ± 0.9	67.2 ± 0.6
MetaProx (proposed)	52.4 ± 1.0	68.8 ± 0.8

Table 4: Accuracies (with 95% confidence intervals) of 5-way few-shot classification using ResNet-12.

method	$1 ext{-shot}$	5-shot
FOMAML	57.41 ± 0.71	72.12 ± 0.54
ANIL	59.66 ± 0.68	73.28 ± 0.49
ProtoNet	59.25 ± 0.64	75.60 ± 0.48
MetaOptNet-SVM(lin)	62.31 ± 0.64	78.21 ± 0.42
MetaOptNet-SVM(cos)	62.75 ± 0.42	78.68 ± 0.24
MetaProx (proposed)	63.82 ± 0.23	79.12 ± 0.18

As can be seen from Table 3 and Table 4, compared with MetaOptNet-SVM, MetaProx performs better due to the learnable regularizer.

Summary

- 1. We proposed an effective meta-regularization algorithm (MetaProx) by kernelized proximal regularization.
- 2. MetaProx combines deep kernel and meta-regularization. By reformulating the problem in the dual space, a learnable proximal regularizer is introduced to the base learner. The meta-parameters in the regularizer and network are updated by the meta-learner.
- 3. Extensive experiments on standard datasets for regression and classification verify the effectiveness of the proposed meta-regularization algorithm.

Reference

[1] G. Denevi, C. Ciliberto, D. Stamos, and M. Pontil. Learning to learn around a common mean. In NeurIPS 2018. [2] A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradients. In NeurIPS 2019. [3] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex optimization. In CVPR 2019.

hot			
\pm	0.9		
\pm	0.9		
\pm	0.6		
_			
\pm	0.9		
\pm	0.5		
\pm	0.3		
\pm	0.7		
\pm	0.7		
\pm	0.6		