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Introduction

• Deep networks are data-hungry, and massive training samples are re-
quired to avoid overfitting. To reduce the labor-intensive and time-
consuming process of data labeling, meta-learning aims to extract
meta-knowledge from seen tasks to accelerate learning on unseen
tasks with limited samples.

• One representative approach is called meta-regularization, in which
the base learner learns the task-specific model by minimizing a reg-
ularized loss. Recently, Denevi et al. [1] study a linear model with
efficient closed-form solution. However, extending to nonlinear models
requires computing the meta-gradient using matrix inversion, which can
be infeasible for large models like neural networks [2].

• To introduce nonlinearity to the base learner, MetaOptNet [3] uses ker-
nel trick and achieves the state-of-the-art performance. However, its
base learner uses a Tikhonov regularizer rather than a learnable prox-
imal regularizer as in meta-regularization methods.

• In this paper, we propose a kernel-based algorithm (called MetaProx)
to meta-learn a proximal regularizer for a nonlinear base learner.

Our Approach

• Notations:

– T is a collection of tasks for meta-training. Each task τ ∈ T con-
tains a support set Sτ and a query set Qτ (ns = |Sτ |).

– An input x is mapped to z = NN(x;φ) in an embedding space E .
Zτ = [z>1 ; . . . ; z

>
ns], where zi = NN(xi;φ) for xi ∈ Sτ .

– K is a base kernel on E × E , H is the corresponding RKHS.

• The problem in the inner loop is:

fτ ≡ argmin
f∈H

∑
(xi,yi)∈Sτ

`(f (zi), yi) +
λ

2
‖f − fθ‖2H.

• By representer theorem, fτ (·;ατ ) = fθ(·) +K(Zτ , ·)>ατ .

• Meta-Regularization by Kernelized Proximal Regularization:

ατ ≡ min
α

∑
(xi,yi)∈Sτ

`(fτ (zi;α), yi) +α>K(Zτ ,Zτ )α (inner)

(θ,φ)← (θ,φ)− η
∑

(x,y)∈Qτ

∇(θ,φ)`(fτ (z;ατ ), y). (outer)

• Advantages:

1. After kernel extension, fθ is a function in H. For nonlinear kernels
(e.g., RBF kernel, cosine kernel), fθ is nonlinear, thus, MetaProx
learns a meta-regularization for a nonlinear base learner.

2. fθ in the base learner is learnable. By setting fθ = 0, MetaProx
recovers MetaOptNet [3]. Experiment results demonstrate that
MetaProx significantly outperforms MetaOptNet, which verifies the
effectiveness of a learnable proximal regularizer.

3. For square loss, ατ = (I + K(Zτ ,Zτ ))−1(yτ − fθ(Zτ )) has an
efficient closed-form solution. For general losses, the dual problem
is convex and can be solved efficiently, as the size of α is very
small (only ns). Though MetaProx still requires matrix inversion in
computing meta-gradients, the size is only ns × ns, much smaller
than nφ × nφ in iMAML [2].

MetaProx Algorithm

In experiments, (i) in regression, K is the linear kernel and fθ(z) = θ>z; (ii) in classification, K is the
cosine kernel, and fθ is a weighted prototype classifier on E , where θ is the weight.

Few-shot Regression on Sine and Sale

(a): 2-shot, σ2ξ = 0 (b): 2-shot, σ2ξ = 1 (c): 5-shot, σ2ξ = 0 (d): 5-shot, σ2ξ = 1

Figure 1: Convergence curves for few-shot sinusoid regression. MetaProx converges much faster and better than the
non-kernel-based methods (MAML, iMAML and Meta-MinibatchProx). In the 2-shot settings, MetaProx converges to a loss
smaller than that of MetaOptNet-RR.

(a): task τ1, σ2ξ = 0 (b): task τ1, σ2ξ = 1 (c): task τ2, σ2ξ = 0 (d): task τ2, σ2ξ = 1

(e): task τ1, σ2ξ = 0 (f): task τ1, σ2ξ = 1 (g): task τ2, σ2ξ = 0 (h): task τ2, σ2ξ = 1

Figure 2: Sinusoid regression: Two meta-testing tasks τ1 and τ2 with different σξ’s in 2-shot (a–d) and 5-shot (e–h) settings.
MetaProx always fits the target curve well.

Table 1: Average MSE (with 95% confidence intervals) of few-shot regression on the Sine and Sale datasets. MetaProx
(with the learned fθ) performs better than MetaOptNet-RR.

Sine (2-shot) Sine (5-shot) Sale

noise-free noisy noise-free noisy 1-shot 5-shot

CommonMean 4.58± 0.07 4.59± 0.07 4.29± 0.06 4.31± 0.06 0.090 0.074
MAML 1.24± 0.12 1.91± 0.13 0.41± 0.03 1.15± 0.05 0.069 0.063
iMAML 1.12± 0.11 1.84± 0.10 0.38± 0.02 1.02± 0.05 0.068 0.063

Meta-MinibatchProx 1.15± 0.08 1.87± 0.09 0.37± 0.02 1.01± 0.03 0.081 0.064
MetaOptNet-RR 0.18± 0.01 0.79± 0.01 0.01± 0.00 0.19± 0.01 0.088 0.068

MetaProx (proposed) 0.11± 0.01 0.43± 0.01 0.01± 0.00 0.13± 0.01 0.061 0.060

Few-shot Regression on QMUL

Table 2: Average MSE (with 95% confidence intervals) of few-shot regression on QMUL
(10-shot). MetaProx with the learnable fθ reduces the errors of MetaOptNet-RR by half.

method in-range out-of-range

Feature Transfer 0.22± 0.03 0.18± 0.01
MAML 0.21± 0.01 0.18± 0.02

DKT + RBF 0.12± 0.04 0.14± 0.03
DKT + Spectral 0.10± 0.02 0.11± 0.02

Meta-MinibatchProx 0.171± 0.022 0.193± 0.025
MetaOptNet-RR 0.021± 0.007 0.039± 0.009

MetaProx (proposed) 0.012± 0.003 0.020± 0.005

Few-shot Classification on mini-ImageNet

Table 3: Accuracies (with 95% confidence intervals) of 5-way few-shot classification
using Conv4.

method 1-shot 5-shot

MAML 48.7± 1.8 63.1± 0.9
FOMAML 48.1± 1.8 63.2± 0.9
REPTILE 50.0± 0.3 66.0± 0.6
iMAML 49.0± 1.8 −

Meta-MinibatchProx 50.8± 0.9 67.4± 0.9
ANIL 46.7± 0.4 61.5± 0.5
R2D2 49.5± 0.2 65.4± 0.3

ProtoNet 49.4± 0.8 68.2± 0.7
MetaOptNet-SVM(lin) 49.8± 0.9 66.9± 0.7
MetaOptNet-SVM(cos) 50.1± 0.9 67.2± 0.6
MetaProx (proposed) 52.4± 1.0 68.8± 0.8

Table 4: Accuracies (with 95% confidence intervals) of 5-way few-shot classification
using ResNet-12.

method 1-shot 5-shot

FOMAML 57.41± 0.71 72.12± 0.54
ANIL 59.66± 0.68 73.28± 0.49

ProtoNet 59.25± 0.64 75.60± 0.48
MetaOptNet-SVM(lin) 62.31± 0.64 78.21± 0.42
MetaOptNet-SVM(cos) 62.75± 0.42 78.68± 0.24
MetaProx (proposed) 63.82± 0.23 79.12± 0.18

As can be seen from Table 3 and Table 4, compared with MetaOptNet-
SVM, MetaProx performs better due to the learnable regularizer.

Summary

1. We proposed an effective meta-regularization algorithm (MetaProx) by
kernelized proximal regularization.

2. MetaProx combines deep kernel and meta-regularization. By reformu-
lating the problem in the dual space, a learnable proximal regularizer
is introduced to the base learner. The meta-parameters in the regu-
larizer and network are updated by the meta-learner.

3. Extensive experiments on standard datasets for regression and clas-
sification verify the effectiveness of the proposed meta-regularization
algorithm.
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