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Abstract: This paper addresses identification problem of switched linear(SL) systems from
input-output data. The main challenge is the partitions of data points correspond to different
subsystems are unavailable. Inspired by compressed sensing theory, we pursue the sparsity
of estimation error and propose �0-norm optimization algorithm to identify parameters.
Unfortunately, the computational complexity of this approach is intractable. To overcome this
difficulty, we replace �0-norm by �1-norm, which retains sparse property. We not only provide
recoverable conditions for identifying SL systems via �1-norm minimization program, but also
show that �1-norm estimator is robust to bounded noise. Numerical experiments are included
to demonstrate the performance of our algorithms.
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1. INTRODUCTION

Switched linear(SL) systems are consisted of several lin-
ear subsystems and a switching law, the former arises
from physical principles and the latter is governed by
logical devices. These systems are important in practice
because numerous biological and engineering systems are
too complex to be described simply by a signal linear
system, while many systems switch between several lin-
ear subsystems depending on different environments. In
addition, SL systems are used to approximate nonlin-
ear phenomenon, e.g. any nonlinear continuous function
can be approximated by piecewise affine(PWA) functions
with arbitrary accuracy. During the last two decades,
SL systems have attracted increasing attention in control
community and many theoretical results were obtained
from various viewpoints, including control design(Ge and
Sun (2005)), observability/stability analysis(Sun and Ge
(2011); Vidal et al. (2003a); Gomez-Gutierrez et al. (2010))
and verification(Bemporad and Morari (1999)). However,
most of these developments hinge on prior knowledge of
system models or switching law, which are unavailable in
many practical applications. In such situations, we need to
identify system parameters in advanced from input-output
data and some a prior structure information.

Identification of SL systems is a challenging problem since
both system parameters and switching law are unknown.
For the piecewise affine(PWA) systems, i.e. the regressors
space is partitioned into polyhedra with affine system
for each polyhedron, the switching law is determined by
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the regressor and continuous in the interior of polyhe-
drons. Based on this particular switching law, numer-
ous identification algorithms have been proposed, e.g.
clustering-based procedure(Ferrari-trecate et al. (2003)),
mixed-integer programing(Roll et al. (2004)), bounded-
error approach(Bemporad et al. (2005)) and recursive
weighted least squares algorithm(Zhao and Zhou (2012)).
When the switching law is arbitrary, most of existing
identification algorithms are based on two-step procedures:
classify the experimented data into several groups accord-
ing to different subsystems, then identify each subsystem
separately. To deal with identification and classification
problem together, an algebraic geometric approach is pro-
posed in Vidal et al. (2003b). In the noise-free case, under
some conditions, this approach identifies system order,
subsystem number, model parameters and classifies data
exactly. Recently, inspired by the developments of com-
pressed sensing community, Bako (2011) presented sparse
optimization to identify SL systems and analyzed recover-
able conditions without concerning noise .

In this paper, we study the performance of identification
of SL systems via �0-norm and �1-norm minimization ap-
proaches. The intuition of �0-norm estimator is following:
noise-free data points are lying on several hyperplanes
and identification of the subsystem that contains the
largest number of data points is equivalent to finding
a parameter vector such that estimation error is spars-
est. Unfortunately, the complexity of pursing sparsity un-
der �0-norm criterion is intractable and Non-deterministic
Polynomial-time (NP) hard. Inspired by recent develop-
ments in compressed sensing community(Candès and Tao
(2005); Candès et al. (2006); Candès and Tao (2007)), we
replace �0-norm by �1-norm, which promotes sparsity and
remains computationally tractable. In Bako (2011), recov-
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Switched linear(SL) systems are consisted of several lin-
ear subsystems and a switching law, the former arises
from physical principles and the latter is governed by
logical devices. These systems are important in practice
because numerous biological and engineering systems are
too complex to be described simply by a signal linear
system, while many systems switch between several lin-
ear subsystems depending on different environments. In
addition, SL systems are used to approximate nonlin-
ear phenomenon, e.g. any nonlinear continuous function
can be approximated by piecewise affine(PWA) functions
with arbitrary accuracy. During the last two decades,
SL systems have attracted increasing attention in control
community and many theoretical results were obtained
from various viewpoints, including control design(Ge and
Sun (2005)), observability/stability analysis(Sun and Ge
(2011); Vidal et al. (2003a); Gomez-Gutierrez et al. (2010))
and verification(Bemporad and Morari (1999)). However,
most of these developments hinge on prior knowledge of
system models or switching law, which are unavailable in
many practical applications. In such situations, we need to
identify system parameters in advanced from input-output
data and some a prior structure information.

Identification of SL systems is a challenging problem since
both system parameters and switching law are unknown.
For the piecewise affine(PWA) systems, i.e. the regressors
space is partitioned into polyhedra with affine system
for each polyhedron, the switching law is determined by
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erable conditions for �0-norm estimator are established on
orthogonal projection matrix, which is difficult to verify,
especially when the data set is large. Instead, our suffi-
cient conditions for recovering via �0-norm and �1-norm
estimators are built on data matrix directly, and appliable
to some kinds of SL systems. When the measurements
are contaminated with noise, unlike algebraic geometric
approach(Vidal et al. (2003b)) that is sensitive to noise, �1-
norm estimator is robust and satisfies an oracle inequality.
Our main contributions are listed here.

• In the noise-free setting, sufficient conditions for re-
covering SL system parameters via �0-norm and �1-
norm estimators are derived.

• Under some conditions, we prove that �1-norm esti-
mator is robust to bounded noise.

• In the bounded noise case, �1-norm estimator achieves
the performance of oracle estimator in some sense.

• Theoritical results are verified via simulations.

The organization of this paper is as follows. In Section
2, we formulate the identification problem of SL systems
and give two illustrated examples. The �0-norm estimators
are designed in Section 3, and identifiable conditions are
established as well. Since �0-norm optimization program is
intractable, we discuss �1-norm minimization program to
estimate system parameters in Section 4. Both recoverable
conditions and robustness are derived in this section.
Several numerical experiments are presented in Section 5
to verify our theoretical developments, and Section 6 draws
the conclusions.

Notation: A vector x ∈ Rn is viewed as a column vector,
and xi denotes the i-th component of x with an exception:
system parameter vector θi ∈ Rn and θi,j denotes the
j-th component of θi. We use ‖x‖2 and ‖x‖1 to denote
the standard �2 and �1 norms on vectors, i.e. ‖x‖2 =√∑n

i=1 x
2
i and ‖x‖1 =

∑n
i=1 |xi|. The set difference I1−I2

is defined as I1 − I2 � {x : x ∈ I1, x /∈ I2}. For a set T ,
|T | is the cardinality of T . A quasi-norm ‖x‖0 is defined
as the number of nonzero components of x, and x is called
k-sparse if ‖x‖0 ≤ k. Given a matrix A ∈ Rm×n, for any
index set T ⊆ {1, 2, · · · , n}, AT ∈ Rn×|T | denotes the
sub-matrix of A consisting of columns of A indexed by
T . Similarly, xT ∈ R|T | denotes the sub-vector of x with
components indexed by T . The transpose of vector x and
matrix A are denoted by xT and AT . Denote Tr(X) as the
trace of matrix X.

2. PROBLEM FORMULATION

Consider SL systems

y(t) = θTσ(t)ϕ(t) + e(t), (1)

where σ(t) ∈ S � {1, · · · , s} is a switch variable, or
the index of subsystem at time t, {θ1, · · · , θs} ⊆ Rn are
system parameters to be identified, ϕ(t) is regressor, e(t)
is measurements noise. The identification problem is to
estimate {θ1, · · · , θs} based on available input-output data
{ϕ(t), y(t)}Nt=1. Let I = {1, 2, · · · , N} and Ii be the index
set of data points correspond to i-th subsystem, denote
Ni = |Ii|. Without loss of generality, assume N1 ≥ N2 ≥
· · · ≥ Ns and {Ii}si=1 are disjoint partition of I.

When switch variable σ(t) is known, we can apply tra-
ditional identification algorithms such as recursive least
square and frequent domain approach to identify each sub-
system separately instead of SL systems. Unfortunately,
data partitions are unavailable in general, and this prob-
lem becomes rather difficult.

We give two illustrated examples and their identification
problems are researched gradually in this paper.

Example 1. (PWA system). Consider a PWA system f(·) :
[−1, 1] → R as follows:

f(x) =

{
x− 1 if − 1 ≤ x ≤ 0

0.5x+ 1 if 0 < x ≤ 0.5

and measurement

y = f(x) + e,

where e is the observation noise. Denote parameter vectors
and regressor as

θ1 = [1, −1]T , θ2 = [0.5, 1]T , ϕ = [x, 1]T ,

then the switching law entirely depends on regressors, that
is, σ(t) = 1 if −1 ≤ ϕ1 ≤ 0; σ(t) = 2 if 0 < ϕ2 ≤ 0.5.

Notice that the switching law of PWA system is a con-
tinuous function of regressors in the interior of each poly-
hedron. This property don’t hold any more in general SL
systems.

Example 2. (SL systems). Consider SL systems f(·) :
Rn → R consisting of three subsystems

f(ϕ(t)) = θTσ(t)ϕ(t),

and measurements

y(t) = f(ϕ(t)) + e(t).

Switching variables {σ(t)}Nt=1 are independent identical
distribution(i.i.d) random variables(r.v.s) with distribu-
tion

P{σ(t) = i} =



α1 if i = 1

α2 if i = 2

α3 if i = 3

where {αi}3i=1 are positive numbers such that
∑3

i=1 αi =
1. In such situation, the outputs may be different for the
same regressors at different switching time.

3. �0-NORM MINIMIZATION APPROACH

In this section, we pursue the sparsity of estimation error
and propose an �0-norm minimization program to identify
system parameters. Since �0-norm is sensititve to noise, we
adopt the following noise-free assumption thoughout this
section.

Assumption 3. (Noise-free). e(t) = 0 for all t.

Define an estimate error vector

Error(θ) = Y −XT θ,

where data matrix X and data vector Y are denoted as

X = [ϕ(1) · · · ϕ(N)]

Y = [y(1) · · · y(N)]T .

According to system evolution (1), Error(θi) is (N −Ni)-
sparse. Based on this observation and N1 ≥ N2, we design
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an estimator of θ1 through solving �0-norm minimization
problem

θ̂ = minimize
θ

‖Y −XT θ‖0. (2)

To study the recoverability of this estimator, we introduce
some basic notions come from compressed sensing.

Definition 4. (Donoho and Elad (2003)). Let X be n×N
matrix with n ≤ N . spark(X) is the smallest number of
columns ofX that are linear dependent, spark(X) = N+1
if all columns of X are linear independent. X is full-spark
if spark(X) = n+ 1.

It is obviously that full-spark implies full-rank, but not
converse. More specifically, spark(X) ≤ rank(X) + 1. An
equivalent statement of full-spark is any n columns of X
are linear independent.

Example 5. Consider the 2 × N data matrix X of PWA
system introduced in Example 1

X =

[
x(1) x(2) · · · x(N)
1 1 · · · 1

]
. (3)

If x(i) �= x(j) whenever i �= j, then X is full-spark as well
as full-rank.

Example 6. For the data matrix X generated by SL sys-
tems in Example 2, if {ϕ(t)}Nt=1 are sampled independently
from Rn, then X is full-spark with probabiltiy one.

Example 7. For a n× (N + 1) matrix X = [e1 IN ], where
e1 = [1 0 · · · 0]T and IN is N × N identity matrix.
Then rank(X) = N but spark(X) = 2 since the first
two columns are identical. Hence, rank(X) is possible to
be much larger than spark(X).

The following theorem show �0-norm minimization pro-
gram (2) recovers θ1 exactly when N1 is sufficient large.

Theorem 8. Under Assumption 3 and X is full-spark, if

N1 ≥ N+n
2 , then the solution θ̂ to (2) equals to θ1.

Proof. Assume θ̂ �= θ1, then ‖Y − XT θ̂‖0 ≤ ‖Y −
XT θ1‖0 ≤ N −N1 since θ̂ is the optimal solution. Hence,

‖XT (θ1 − θ̂)‖0 ≤ 2(N −N1), which implies that there are

at least 2N1 − N rows of XT are orthogonal to θ1 − θ̂.
Since n ≤ 2N1 −N , there exist at least n rows of XT , or

columns of X are orthogonal to θ1 − θ̂, which contradicts
to X is full-spark.

When θ1 is recovered, data points correspond to the 1-th
subsystem are identified at the same time. In a sequel,
we estimate θ2 and then I2 based on remaining data
points {ϕ(t), y(t)}t∈∪s

i=2
Ii
, and so on for {θi, Ii}si=3. The

procedure of �0-norm estimator is alternated between
identification and classification:

θ1 → I1 → θ2 → I2 → · · · → θs → Is. (4)

The �0-norm estimator is designed as follows.

Algorithm 1 �0-norm estimator

Input: {ϕ(t), y(t)}Nt=1

Initialization: Î0 = ∅
while 1 ≤ i ≤ s do

1. Estimate θi:

θ̂i = argmin ‖YI−∪i−1
j=0

Îj
−XT

I−∪i−1
j=0

Îj
θ‖0

2. Estimate Ii:
Îi = {t : y(t)− θ̂Ti ϕ(t) = 0}

end while
Output: {θ̂i}si=1

Corollary 9. Under Assumption 3 and X is full-spark. If
{Ni}si=1 satisfy chained inequalities:

N1 ≥ N + n

2

N2 ≥ N −N1 + n

2
...

Ns−1 ≥ N −N1 − · · · −Ns−2 + n

2
Ns ≥ n,

then {θi, Ii}si=1 are recovered perfectly via Algorithm 1.

Proof. Suppose {Ni}si=1 satisfy chained inequalities, then
Theorem 8 implies that θ1 and I1 are recovered via
Algorithm 1. Follow a similar technique as Theorem 8, it
is easy to verify that θ2 is the unique solution to �0-norm
minimization problem

minimize ‖YI−I1 −XT
I−I1

θ‖0,
and then I2 = {t : y(t) − ϕ(t)T θ2 = 0} is identified.
Proceed Algorithm 1, we recover {θi, Ii}si=1.

The significant challenge is how to design inputs such
that X is full-spark, especially when N � n. This is an
NP hard problem for deterministic inputs(Tillmann and
Pfetsch (2014)). Fortunately, for random input sequence,
full-spark property holds almost surely.

Assumption 10. (Inputs). {ϕ(t)}Nt=1 are independent iden-
tical distribution(i.i.d) Gaussian random variables(r.v.s)
with distribution N (0, In).

Theorem 11. Under Assumption 10, X is full-spark with
probability one.

Proof. Since any n independent random vectors in Rn

are linear independent with probability one, we have
spark(X) ≥ n + 1. In addition, X is full-rank almost
surely, thus, spark(X) ≤ n + 1, and we conclude that
spark(X) = n+ 1 with probability one.

Remark 12. For some SL systems, e.g. switched autore-
gressive system with exogenous inputs(SARX) and PWA
systems, some components of X are dependent and deter-
ministic, so Assumption 10 is violated. However, random
inputs are possible to make X sufficiently disorder such
that full-spark condition holds, as shown in next example.

Example 13. Consider the PWA system introduced in
Example 1 when inputs {x(t)}Nt=1 are i.i.d r.v.s with
uniform distributions U(−1, 0.5). Since with probability
1, x(t1) �= x(t2) whenever t1 �= t2, it follows from Example
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we estimate θ2 and then I2 based on remaining data
points {ϕ(t), y(t)}t∈∪s

i=2
Ii
, and so on for {θi, Ii}si=3. The

procedure of �0-norm estimator is alternated between
identification and classification:

θ1 → I1 → θ2 → I2 → · · · → θs → Is. (4)

The �0-norm estimator is designed as follows.

Algorithm 1 �0-norm estimator

Input: {ϕ(t), y(t)}Nt=1

Initialization: Î0 = ∅
while 1 ≤ i ≤ s do

1. Estimate θi:

θ̂i = argmin ‖YI−∪i−1
j=0

Îj
−XT

I−∪i−1
j=0

Îj
θ‖0

2. Estimate Ii:
Îi = {t : y(t)− θ̂Ti ϕ(t) = 0}

end while
Output: {θ̂i}si=1

Corollary 9. Under Assumption 3 and X is full-spark. If
{Ni}si=1 satisfy chained inequalities:

N1 ≥ N + n

2

N2 ≥ N −N1 + n

2
...

Ns−1 ≥ N −N1 − · · · −Ns−2 + n

2
Ns ≥ n,

then {θi, Ii}si=1 are recovered perfectly via Algorithm 1.

Proof. Suppose {Ni}si=1 satisfy chained inequalities, then
Theorem 8 implies that θ1 and I1 are recovered via
Algorithm 1. Follow a similar technique as Theorem 8, it
is easy to verify that θ2 is the unique solution to �0-norm
minimization problem

minimize ‖YI−I1 −XT
I−I1

θ‖0,
and then I2 = {t : y(t) − ϕ(t)T θ2 = 0} is identified.
Proceed Algorithm 1, we recover {θi, Ii}si=1.

The significant challenge is how to design inputs such
that X is full-spark, especially when N � n. This is an
NP hard problem for deterministic inputs(Tillmann and
Pfetsch (2014)). Fortunately, for random input sequence,
full-spark property holds almost surely.

Assumption 10. (Inputs). {ϕ(t)}Nt=1 are independent iden-
tical distribution(i.i.d) Gaussian random variables(r.v.s)
with distribution N (0, In).

Theorem 11. Under Assumption 10, X is full-spark with
probability one.

Proof. Since any n independent random vectors in Rn

are linear independent with probability one, we have
spark(X) ≥ n + 1. In addition, X is full-rank almost
surely, thus, spark(X) ≤ n + 1, and we conclude that
spark(X) = n+ 1 with probability one.

Remark 12. For some SL systems, e.g. switched autore-
gressive system with exogenous inputs(SARX) and PWA
systems, some components of X are dependent and deter-
ministic, so Assumption 10 is violated. However, random
inputs are possible to make X sufficiently disorder such
that full-spark condition holds, as shown in next example.

Example 13. Consider the PWA system introduced in
Example 1 when inputs {x(t)}Nt=1 are i.i.d r.v.s with
uniform distributions U(−1, 0.5). Since with probability
1, x(t1) �= x(t2) whenever t1 �= t2, it follows from Example
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5 that data matrix X is full-spark almost surely. As the
number of data points N increasing, the probability that
chained inequality holds tends to one.

Example 14. For the SL systems in Example 2, under the
Assumption 10, if α1 > 0.5, α2 > 0.25 and α3 > 0,
then excluding a zero measure set, {Ni}3i=1 satisfy chained
inequalities when N is large enough.

4. �1-NORM MINIMIZATION APPROACHES

In the last section, we introduce �0-norm estimator and
provide recoverable conditions. Unfortunately, sparse opti-
mization problem is non-convex and intractable, we should
replace �0-norm by other norms that retain sparse but
tractable. A popular one is �1-norm and the minimization
program is as follows:

minimize
θ

‖Y −XT θ‖1. (5)

Similar to spark property in �0-norm minimization pro-
gram, we introduce a matrix property called k-balance.

Definition 15. An m × n matrix A is k-balance if there
exists a constant ς > 0, for any nonzero vector z ∈ Rn, for
any index set K ⊆ I with |K| = k, it holds that

‖(Az)K‖1 + ς‖z‖2 < ‖(Az)Kc‖1. (6)

We call A is weak k-balance if ς = 0 in (6).

When A is weak k-balance, for any vector z, Az approx-
imately assigns its length ‖Az‖1 to each components on
average.

Remark 16. An equivalent expression of (6) is

‖(Az)K‖1 + ς‖z‖2 <
1

2
‖Az‖1. (7)

Theorem 17. Under Assumption 3, if XT is weak (N −
N1)-balance, then the solution θ̂ to (5) is equal to θ1.

Proof. For any z ∈ Rn,

‖Y −XT z‖1 =‖(Y −XT θ1) +XT (θ1 − z)‖1
≥‖Y −XT θ1‖1 − ‖(XT (θ1 − z))Ic

1
‖1

+ ‖(XT (θ1 − z))I1
‖1

≥‖Y −XT θ1‖1 + ς‖θ1 − z‖
≥‖Y −XT θ1‖1, (8)

where the second inequality is followed from (6) with K
replaced by Ic

1 . Since the equality of (8) holds only if
z = θ1, we conclude that θ1 is the unique solution to (5).

Corollary 18. Under Assumption 3, {θ1, · · · , θs} are re-

covered via �1-norm minimization programs if ΦT
i �

XT

I−
⋃i−1

j=1
Ij

is weak (N −
∑i

j=1 Nj)-balance for all i.

Proof. Follow the procedure as proof of Corollary 9 and
we omit it here.

For �0-norm estimators, all the analysis are based on noise-
free assumption since �0-norm is sensitive to disturbance.
However, �1-norm estimator is robust to bounded noise
and also optimal in certain sense.

Theorem 19. Assume supt |e(t)| ≤ ρ and XT is (N −N1)-

balance. Let θ̂1 be the solution to (5), then ‖θ1 − θ̂1‖2 ≤
c0ρ, where c0 is a constant independent of noise.

Proof. Since θ̂1 is the optimal solution to (5),

‖Y −XT θ̂1‖1 ≤ ‖Y −XT θ1‖1. (9)

Let V � Y −XT θ1 and rewrite (9) as

‖XT (θ1 − θ̂1) + V ‖1 ≤ ‖V ‖1. (10)

Since

‖V ‖1 =‖(V )Ic
1
‖1 + ‖(V )I1

‖1
≤‖(Y −XT θ̂1)Ic

1
‖1

+ ‖(XT (θ1 − θ̂1))Ic
1
‖1 + ρ|I1| (11)

and

‖XT (θ1 − θ̂1) + V ‖1
≥ ‖(XT (θ1 − θ̂1) + V )Ic

1
‖1

+ ‖(XT (θ1 − θ̂1))I1
‖1 − ρ|I1|. (12)

substitute (11) and (12) into (10) implies

‖(XT (θ1 − θ̂1))I1
‖1

≤ ‖(XT (θ1 − θ̂1))Ic
1
‖1 + 2ρ|I1|

or
1

2
‖XT (θ1 − θ̂1)‖1 − ‖(XT (θ1 − θ̂1))Ic

1
‖1 ≤ ρ|I1|.

Since XT is (N − N1)-balance and Ic
1 = N − N1, apply

(7) to above inequality with z and |K| replaced by θ1 − θ̂1
and I1 respectively, we obtain

‖θ1 − θ̂1‖2 ≤ |I1|
ς

ρ = c0ρ,

where c0 = N1

ς .

Theorem 19 shows that the square error of �1-norm esti-
mator is proportional to the noise level ρ2, it is of interest
to see that this performance can’t be improved any more
in the sense of ignoring the factor c0. Assume {e(t)}Nt=1 are
i.i.d bounded noise with variance c̃0ρ

2 and supt |e(t)|∞ ≤
ρ, where c̃0 is a constant. Suppose the eigenvalues of
XI1X

T
I1

lies in the interval [
√
N1−

√
n− δ,

√
N1+

√
n+ δ],

where δ ∈ [0,
√
N1−

√
n) is independent of K but depends

on N1. We remark that under the Assumption 10, this

property holds with probability at least 1 − e−δ2/2, see
Davidson and Szarek (2001) for details. Provided we had
available an oracle letting us know the index sets {Ij}sj=1

in advance. Then oracle estimator (linear least square
estimator) of the 1-st subsystem is given by

θ̂oracle1 = (XI1
XT

I1
)−1XI1

YI1

and its mean square error is

E ‖θ1 − θ̂oracle1 ‖22 = E ‖(XI1
XT

I1
)−1XI1

EI1
‖22

= c̃0ρ
2 Tr((XI1

XT
I1
)−1).

It follows from Tr((XI1X
T
I1
)−1) ≥ n√

N1+
√
n+δp

that

E ‖θ1 − θ̂oracle1 ‖22 ≥ nc̃0√
N1 +

√
n+ δp

ρ2.

Hence, compared with Theorem 19, under balance con-
ditions, �1-norm estimator achieves the performance as
oracle does except a factor, which is viewed as the price
we pay for loss of knowledge of switch variable.

After θ1 is identified, we estimate I1 using threshold
method

Î1 = {t : |y(t)− θ̂T1 ϕ(t)| ≤ η},
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Fig. 1. Percentage of successful recovery for different
N1/N .

where η > 0 can be determinied by trajectory analysis(see
Section 5). Similar to the noise-free case, estimator of θ2
is given by

θ̂2 = argmin ‖YI−Î1
−XT

I−Î1
θ‖1.

To sum up the �1-norm estimate procedure, we give an
algorithm as follows.

Algorithm 2 �1-norm estimator

Input: {ϕ(t), y(t)}Nt=1

Initialization: Threshold η > 0, Î0 = ∅
while 1 ≤ i ≤ s do

1. Estimate θi:

θ̂i = argmin ‖YI−∪i−1
j=0

Îj
−XT

I−∪i−1
j=0

Îj
θ‖1

2. Select threshold η
3. Estimate Ii:

Îi = {t : |y(t)− θ̂Ti ϕ(t)| ≤ η}
end while
Output: {θ̂i}si=1

The remaining difficulty is how to design inputs such
that XT is k-balanced. Similar to spark, for deterministic
inputs, this is a combinational problem. Fortunately, when
the input signals are i.i.d Gaussian r.v.s, XT is k-balanced
with high probability.

Theorem 20. (Dwork et al. (2007)). Under Assumption 10,
suppose k = βN and β sufficient small, then XT is k-
balance with overwhelming probability 1− Ce−cN , where
c and C are positive constants independent of N .

5. NUMERICAL EXPERIMENTS

In this section, we design experiments to test the perfor-
mance of �1-norm estimator. Consider SL systems

y(t) = θTσ(t)ϕ(t) + e(t),

where σ(t) ∈ {1, 2} and

θ1 = [−1 2 −1.3 1.5]
T
,

θ2 = [2.5 −0.7 −2 1.2]
T
.

We generate the data set under the following conditions:
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Fig. 2. Estimates of θ1 via �1-norm and oracle estimators
when measurements are contaminated with noise.
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Fig. 3. Estimates of θ2 via �1-norm and oracle estimators
when measurements are contaminated with noise.

• The inputs {ϕ(t)}Nt=1 are i.i.d r.v.s with standard
normal distributions N (0, I4).

• The noise {e(t)}Nt=1 are i.i.d r.v.s. with uniform dis-
tribution U(−ρ, ρ). In addition, e(t) and ϕ(t) are
independent.

• For the switch variable, we suppose

σ(t) =

{
1 if 1 ≤ t ≤ N1

2 if N1 + 1 ≤ t ≤ N

In the first part, we verify the recoverability of �1-norm
estimator in the noise-free case, i.e. ρ = 0. For a fixed
value N1, we solve �1-norm minimization program (5) for
100 times on independent simulations with N = 1000, and
compute the percentage of recovering θ1 successfully. In
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where η > 0 can be determinied by trajectory analysis(see
Section 5). Similar to the noise-free case, estimator of θ2
is given by

θ̂2 = argmin ‖YI−Î1
−XT

I−Î1
θ‖1.

To sum up the �1-norm estimate procedure, we give an
algorithm as follows.

Algorithm 2 �1-norm estimator

Input: {ϕ(t), y(t)}Nt=1

Initialization: Threshold η > 0, Î0 = ∅
while 1 ≤ i ≤ s do

1. Estimate θi:

θ̂i = argmin ‖YI−∪i−1
j=0

Îj
−XT

I−∪i−1
j=0

Îj
θ‖1

2. Select threshold η
3. Estimate Ii:

Îi = {t : |y(t)− θ̂Ti ϕ(t)| ≤ η}
end while
Output: {θ̂i}si=1

The remaining difficulty is how to design inputs such
that XT is k-balanced. Similar to spark, for deterministic
inputs, this is a combinational problem. Fortunately, when
the input signals are i.i.d Gaussian r.v.s, XT is k-balanced
with high probability.

Theorem 20. (Dwork et al. (2007)). Under Assumption 10,
suppose k = βN and β sufficient small, then XT is k-
balance with overwhelming probability 1− Ce−cN , where
c and C are positive constants independent of N .

5. NUMERICAL EXPERIMENTS

In this section, we design experiments to test the perfor-
mance of �1-norm estimator. Consider SL systems

y(t) = θTσ(t)ϕ(t) + e(t),

where σ(t) ∈ {1, 2} and

θ1 = [−1 2 −1.3 1.5]
T
,

θ2 = [2.5 −0.7 −2 1.2]
T
.

We generate the data set under the following conditions:
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• The inputs {ϕ(t)}Nt=1 are i.i.d r.v.s with standard
normal distributions N (0, I4).

• The noise {e(t)}Nt=1 are i.i.d r.v.s. with uniform dis-
tribution U(−ρ, ρ). In addition, e(t) and ϕ(t) are
independent.

• For the switch variable, we suppose

σ(t) =

{
1 if 1 ≤ t ≤ N1

2 if N1 + 1 ≤ t ≤ N

In the first part, we verify the recoverability of �1-norm
estimator in the noise-free case, i.e. ρ = 0. For a fixed
value N1, we solve �1-norm minimization program (5) for
100 times on independent simulations with N = 1000, and
compute the percentage of recovering θ1 successfully. In
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Fig. 4. When η < 0.1, the ratio N̂1

N increases as η increases,
but remains around 0.65 when η > 0.1. Hence, we
select the threholds η = 0.1.

Fig. 1, �1-norm estimator recovers θ1 successfully when
N1

N > 61%, which is consistent with Theorem 17 and 20.

In the second part, we test the robustness of Algorithm
2. Assume noise level ρ = 0.05 and N1 = 0.65N , run
Algorithm 2 as N increasing. After Step 1, we obtain the
estimation of first subsystem, which is shown in Fig. 2
together with oracle estimation. Then, follow Algorithm

2, we tracking the ratio |Î1|
I (i.e. N̂1

N ) as η increases when
N = 50. As shown in Fig. 4, when η < 0.1, the value

of N̂1

N increases as η increases. However, when η > 0.1,
N̂1

N stops increasing and remains around 0.65. Hence, we
choose threshold η = 0.1 to identify the data points
belong to first subsystem. The estimates of θ2 via �1-
norm and oracle estimators are shown in Fig. 3, where
our estimator achieves oracle level when N > 25. This
remarkable performance is in accordance with Theorem
19 and discussions below it.

6. CONCLUSIONS

In this paper, we discusses the identification problem of
SL systems from input-output datum. We transform this
problem into pursuing the sparsity of estimate error, which
is actually an �0-norm optimization. Since solving �0-norm
minimization problem is intractable, we relax it and pro-
pose �1-norm minimization program. When the measure-
ments are noise-free, sufficient conditions for recovering
SL systems via �0-norm and �1-norm estimators are pro-
vided respectively. We also show that �1-norm estimator
is robust to bounded noise and meets oracle inequality.
Experiments are included to verify theoretical results and
demonstrate the performance of �1-norm estimator. For
further research, it is of interest to verify spark and k-
balance conditions for general input sequences.
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