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Abstract

Prompt tuning for pre-trained masked language
models (MLM) has shown promising perfor-
mance in natural language processing tasks with
few labeled examples. It tunes a prompt for
the downstream task, and a verbalizer is used
to bridge the predicted token and label prediction.
Due to the limited training data, prompt initial-
ization is crucial for prompt tuning. Recently,
MetaPrompting (Hou et al., 2022) uses meta-
learning to learn a shared initialization for all task-
specific prompts. However, a single initialization
is insufficient to obtain good prompts for all tasks
and samples when the tasks are complex. More-
over, MetaPrompting requires tuning the whole
MLM, causing a heavy burden on computation
and memory as the MLM is usually large. To
address these issues, we use a prompt pool to ex-
tract more task knowledge and construct instance-
dependent prompts via attention. We further pro-
pose a novel soft verbalizer (RepVerb) which con-
structs label embedding from feature embeddings
directly. Combining meta-learning the prompt
pool and RepVerb, we propose MetaPrompter for
effective structured prompting. MetaPrompter is
parameter-efficient as only the pool is required
to be tuned. Experimental results demonstrate
that MetaPrompter performs better than the re-
cent state-of-the-arts and RepVerb outperforms
existing soft verbalizers.
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1. Introduction
In recent years, large pre-trained language models have
achieved great success in solving a variety of downstream
tasks (Howard & Ruder, 2018; Devlin et al., 2019; Yang
et al., 2019; Conneau & Lample, 2019; Song et al., 2020;
Guo et al., 2020; Raffel et al., 2020; Brown et al., 2020;
Lester et al., 2021; Cui et al., 2022). Though fine-tuning the
whole model (Howard & Ruder, 2018; Devlin et al., 2019)
is effective and widely-used, optimizing and storing all
the task-specific parameters can be compute- and memory-
expensive when the model is large (e.g., GPT-3 (Brown
et al., 2020) contains 100+ billion parameters). To alleviate
this issue, many approaches have been proposed. Exam-
ples include adapter tuning (Houlsby et al., 2019; Lin et al.,
2020; Hu et al., 2022a) and prompt learning (Radford et al.,
2019; Shin et al., 2020; Brown et al., 2020; Lester et al.,
2021; Liu et al., 2021; Li & Liang, 2021; Liu et al., 2022b;
Prasad et al., 2022; Liu et al., 2022a). However, prompt
learning is more preferable due to its effectiveness and also
that it can be easily plugged into a pre-trained MLM without
invasive modification (Li & Liang, 2021; Hambardzumyan
et al., 2021; He et al., 2022; Sun et al., 2022).

Prompt learning formulates the downstream task as a cloze-
style MLM problem. It is useful for few-shot tasks due to
its effectiveness, parameter-efficiency, and plug-and-play
nature (Radford et al., 2019; Brown et al., 2020; Liu et al.,
2022a). Specifically, prompt learning wraps an input text
with a discrete prompt (e.g., “Topic is [MASK]”) and
feeds it to the MLM to predict a token at the [MASK]
position. A verbalizer (Lester et al., 2021; Ding et al., 2022;
Hu et al., 2022b) then maps the predicted token to the label.
However, designing an effective prompt requires a good
understanding of the downstream tasks.

Recently, prompt tuning (Lester et al., 2021; Liu et al., 2021;
Zhang et al., 2022) proposes to wrap the input embedding
with a continuous prompt. To reduce the number of parame-
ters to be learned, the MLM is kept frozen. The continuous
prompt can be further combined with discrete tokens to form
a template (Liu et al., 2021; Schick & Schütze, 2021; Ding
et al., 2022).

Prompt tuning can be sensitive to initialization (Lester et al.,
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Figure 1. 5-way 5-shot classification meta-testing accuracy of
MetaPrompting with or without MLM tuning on six data sets.

2021). Recently, a number of approaches have been pro-
posed to alleviate this problem (Lester et al., 2021; Li
et al., 2022; Vu et al., 2022). In particular, MetaPrompt-
ing (Hou et al., 2022) is the state-of-the-art that uses meta-
learning (Bengio et al., 1991; Thrun & Pratt, 1998; Finn
et al., 2017) to learn a meta-initialization for all task-specific
prompts. However, MetaPrompting suffers from three prob-
lems. (i) When the tasks are complex, it is challenging
to obtain good prompts for all tasks and samples from a
single meta-initialized prompt. (ii) MetaPrompting uses
a hand-crafted verbalizer. However, selecting good label
tokens for the hand-crafted verbalizer is labor-intensive and
not scalable for a large label set. (iii) MetaPrompting re-
quires expensive tuning the whole MLM. Figure 1 shows a
large gap in meta-testing accuracies with and without MLM
tuning (experimental details are in Section 4).

In this paper, we use a pool of multiple prompts (Li et al.,
2022; Wang et al., 2022a;b) to extract task knowledge from
meta-training tasks, and then construct instance-dependent
prompts as weighted combinations of all the prompts in
the pool via attention (Vaswani et al., 2017). The atten-
tion’s query vector is the instance’s feature embedding.
The prompt pool is the shared meta-knowledge and learned
by the MAML algorithm (Finn et al., 2017). Specifically,
given a task with a support set and a query set, the base
learner takes the meta-parameter and the support set to
build a task-specific prompt pool, then the meta-learner op-
timizes the meta-parameter on the query set. Meta-learning
a prompt pool is more flexible than meta-learning only a sin-
gle prompt initialization (as in MetaPrompting), and allows
better adaptation of complex tasks. Moreover, as only the
prompt pool is tuned, it is much more parameter-efficient
than MetaPrompting (with 1000× fewer parameters).

We also propose a novel soft verbalizer called representative
verbalizer (RepVerb), which constructs label embeddings by
averaging feature embeddings of the corresponding training
samples. Unlike manually-designed verbalizers, RepVerb
does not incur human effort for label token selection. More-
over, as RepVerb does not require learning any additional
parameters, empirical results in Section 4.2 demonstrate
that RepVerb is more effective than the soft verbalizers in
WARP (Hambardzumyan et al., 2021), DART (Zhang et al.,

2022), ProtoVerb (Cui et al., 2022). Besides, the feature
embedding learned by RepVerb is more discriminative.

The whole procedure, which combines meta-learning the
structured prompts and RepVerb, is called MetaPrompter
in the sequel. Experiments are performed on six widely used
classification data sets. Results demonstrate that RepVerb
outperforms existing soft verbalizers, and is also beneficial
to other prompt-based methods such as MetaPrompting.
Moreover, MetaPrompter achieves better performance than
the recent state-of-the-arts.

Our contributions are summarized as follows: (i) We pro-
pose a parameter-efficient algorithm MetaPrompter for ef-
fective structured prompting. (ii) We propose a simple and
effective soft verbalizer (RepVerb). (iii) Experimental re-
sults demonstrate the effectiveness and parameter-efficiency
of MetaPrompter.

2. Preliminaries and Related Work
2.1. Prompt Learning
Recently, it is common to use a pre-trained MLMM(·;φ),
with parameter φ, for various downstream tasks such as lan-
guage understanding (Dong et al., 2019; Yang et al., 2019;
Song et al., 2020), machine translation (Conneau & Lample,
2019; Guo et al., 2020), and text classification (Brown et al.,
2020; Lester et al., 2021; Liu et al., 2022b). Given a raw sen-
tence represented as a sequence of n tokens (x1, . . . , xn),
the MLM takes x = ([CLS], x1, . . . , xn,[SEP]) as in-
put (where [CLS] is the start token and [SEP] is the
separator), and encodes it into a sequence of hidden rep-
resentations (h[CLS],h1, . . . ,hn,h[SEP]). In standard fine-
tuning (Howard & Ruder, 2018; Devlin et al., 2019), an extra
classifier (e.g., a fully connected layer with softmax normal-
ization) is added on top of h[CLS] to predict the label distri-
bution. This classifier, together with φ, are tuned to maxi-
mize the probability of correct labels. As language models
are large (e.g., 175 billion parameters in GPT-3 (Brown
et al., 2020)), fine-tuning all parameters can cause a heavy
burden on computation and memory.

On the other hand, prompt learning (Brown et al., 2020;
Shin et al., 2020; Ding et al., 2022) freezes the pre-
trained model and formulates the downstream task as a
cloze-style MLM problem. For example, in topic clas-
sification, “Topic is [MASK]” can be used as the
prompt, where [MASK] is a special token for predic-
tion. The discrete tokens “Topic is” are also called
anchor tokens. An input text x is wrapped with the
prompt and mapped to an input embedding sequence
(E(x), E(Topic), E(is), E([MASK])), where E(·) de-
notes the input embedding. Designing a suitable prompt
requires domain expertise and a good understanding of
the downstream tasks (Brown et al., 2020; Sanh et al.,
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2022). Thus, manually-designed prompts are likely to be
sub-optimal.

Unlike discrete prompts, prompt tuning (Lester et al., 2021;
Liu et al., 2021) uses a continuous prompt θ ∈ RLp×di (of
length Lp) to directly wrap the input embedding sequence as
(E(x),θ, E([MASK])). This can be further combined with
anchor tokens to form a template (Liu et al., 2021; Schick
& Schütze, 2021; Ding et al., 2022):

x̃ ≡ T(x;θ)=(E(x),θ, E(Topic), E(is), E([MASK])).

The MLM then outputs the hidden embedding
h[MASK](x̃) ∈ Rdo of [MASK], and infers the token
to be filled at the [MASK] position.

A verbalizer (Lester et al., 2021; Ding et al., 2022; Hu
et al., 2022b) bridges the prediction at the [MASK] posi-
tion and labels in prompt learning. Specifically, it is a hard
mapping from each label y to a set of label-relevant tokens
Vy. For example, for y = SPORTS, we can have Vy =
{sports, football, basketball}. Prompt tun-
ing then optimizes1 (φ,θ) by maximizing the label proba-
bility:

P̂(y|x;φ,θ)= 1

|Vy|
∑
w∈Vy

PM([MASK] = w|T(x;θ)), (1)

where PM([MASK]|T(x;θ)) is the probability distribution
over vocabulary as predicted by the MLM at the [MASK]
position.

The verbalizer is crucial to the performance of prompt learn-
ing (Lester et al., 2021; Ding et al., 2022). However, select-
ing label-relevant tokens requires intensive human labor. To
address this problem, search-based methods (Schick et al.,
2020; Shin et al., 2020; Gao et al., 2021) try to find label to-
kens automatically from the training data. However, search-
ing in a discrete space is computationally intensive (Schick
et al., 2020; Shin et al., 2020; Gao et al., 2021), especially
with a large number of labels or vocabulary. Some recent
works (Hambardzumyan et al., 2021; Zhang et al., 2022; Cui
et al., 2022) propose soft verbalizers, which map each label
to a continuous embedding and predict the label distribution
based on the similarities between feature embedding and la-
bel embeddings. WARP (Hambardzumyan et al., 2021) and
DART (Zhang et al., 2022) obtain this label embedding by
supervised learning, while ProtoVerb (Cui et al., 2022) uses
contrastive learning (Chen et al., 2020; Tian et al., 2020).
However, learning the embedding vy ∈ Rdo for each la-
bel y can be challenging in the few-shot learning setting
(Gao et al., 2019; Bao et al., 2020; Han et al., 2021; Chen
et al., 2022; Hou et al., 2022), as the number of samples per
class is typically much smaller than do (e.g., do = 768 for
BERT (Devlin et al., 2019)).

1φ can be fixed for parameter-efficiency in prompt learning.

2.2. Meta-Learning for Prompt Learning

In meta-learning (Bengio et al., 1991; Thrun & Pratt, 1998),
a collection T of tasks are used to learn a shared meta-
parameter. Each task τ ∈ T has a support set Sτ and
a query set Qτ . Let Yτ be the label set of τ . Typical
meta-learning algorithms can be metric-based (Vinyals et al.,
2016; Snell et al., 2017; Bertinetto et al., 2018; Lee et al.,
2019), memory-based (Santoro et al., 2016; Munkhdalai
& Yu, 2017), or optimization-based (Finn et al., 2017; Ra-
jeswaran et al., 2019; Raghu et al., 2020; Ye et al., 2021;
Jiang et al., 2021; 2022; Flennerhag et al., 2022). In gen-
eral, the optimization-based approach is preferred due to its
simplicity and effectiveness. A representative algorithm is
model-agnostic meta-learning (MAML) (Finn et al., 2017).

As prompt tuning is sensitive to prompt initialization in few-
shot tasks (Lester et al., 2021), meta-learning can be used
to search for a good initialization. MetaPrompting (Hou
et al., 2022) uses MAML to learn a meta-initialization for
the task-specific prompts. At iteration t, the base learner
takes a task τ and meta-parameter (φt−1,θt−1), and builds
a task-specific model (φt,J ,θt,J) by performing J gradient
updates on the support set with step size α and initialization
(φt,0,θt,0) ≡ (φt−1,θt−1):

(φt,j ,θt,j) = (φt,j−1,θx,j−1)

+α∇(φt,j−1,θx,j−1)

∑
(x,y)∈Sτ

log P̂(y|x;φt,j−1,θx,j−1).

The meta-learner then updates the meta-initialization by
maximizing the log-likelihood objective on the query set
with step size η:

(φt,θt) = (φt−1,θt−1)

+ η∇(φt−1,θt−1)

∑
(x,y)∈Qτ

log P̂(y|x;φt,J ,θt,J).

Though MetaPrompting achieves state-of-the-art perfor-
mance in the few-shot classification experiments (Hou et al.,
2022), it suffers from the three problems discussed in Sec-
tion 1. (i) When the tasks are complex, it is challenging
to use a single meta-initialized prompt for adaptation to
the various tasks. (ii) MetaPrompting uses a hand-crafted
verbalizer, which is labor-intensive and not scalable as dis-
cussed in Section 2.1. (iii) MetaPrompting needs to tune
the MLM parameters, and thus is not parameter-efficient.

3. Proposed Method
In Section 3.1, we first propose a novel and effective soft
verbalizer (representative verbalizer) without inducing addi-
tional parameters. Moreover, while MetaPrompting uses a
single prompt initialization to build task-specific prompts,
we propose in Section 3.2 the extraction of task knowledge

3



Effective Structured Prompting by Meta-Learning and Representative Verbalizer

Algorithm 1 Representative Verbalizer (RepVerb).

1: procedure ComputeLabelEmbedding(Sτ ):
2: compute h[MASK](x̃) for (x, ·) ∈ Sτ ;
3: compute vy by (2) for y ∈ Yτ ;
4: end procedure

1: procedure Predict(x;vy : y ∈ Yτ )
2: compute h[MASK](x̃) for x;
3: compute P̃(y|x;φ,θ) by (3);
4: end procedure

into a pool of multiple prompts, and constructs instance-
dependent prompts by attention (Vaswani et al., 2017).

3.1. Representative Verbalizer (RepVerb)

Instead of explicitly learning an embedding vy for each
label y (Hambardzumyan et al., 2021; Cui et al., 2022;
Zhang et al., 2022), we propose the Representative Ver-
balizer (RepVerb), which constructs vy from feature embed-
dings of the corresponding training samples (Algorithm 1).
It does not require learning additional parameters, and is
thus more effective on limited data as in few-shot learning.

Specifically, let Sτ,y be the subset of samples in Sτ with
label y. For an input x, we wrap it with the template and
feed x̃ ≡ T(x;θ) to the pre-trained MLM, and then obtain
[MASK]’s embedding h[MASK](x̃) as its feature embedding.
Similar to ProtoNet (Snell et al., 2017), we propose to con-
struct vy for each y by averaging the corresponding samples’
feature embeddings, as:

vy =
1

|Sτ,y|
∑

(x,y)∈Sτ,y

h[MASK](x̃). (2)

To predict the label of a given x, we measure the cosine
similarity2 between h[MASK](x̃) and each vy (y ∈ Yτ ):

P̃(y|x;φ,θ)= exp(ρ cos(vy,h[MASK](x̃)))∑
y′∈Yτexp(ρ cos(vy′ ,h[MASK](x̃)))

, (3)

where ρ > 0 is the temperature. When ρ→∞, P̃(y|x;φ,θ)
becomes one-hot; whereas when ρ → 0, P̃(y|x;φ,θ) be-
comes uniform. In the experiments, we set ρ = 10 as in
Oreshkin et al. (2018).

3.2. Meta Structured-Prompting

In the following, we propose the use of MAML and at-
tention mechanism (Vaswani et al., 2017) to meta-learn
a prompt pool. While MetaPrompting uses task-specific
prompts (Hou et al., 2022), we propose the construction of
instance-specific prompts, which allows more flexibility.

3.2.1. META-LEARN A PROMPT POOL

While MetaPrompting uses only a single initialization for
the prompt, we propose to leverage a pool of prompts to

2Dissimilarity measures, such as the Euclidean distance, can
also be used.

extract more task knowledge, which is particularly effective
when the tasks are complex and very different prompts
may be needed. A prompt pool has K learnable prompts
{(ki,θi) : i = 1, . . . ,K}, with key ki ∈ Rdo and value
θi ∈ RLp×di (Li et al., 2022; Wang et al., 2022a;b). Note
that the size of the prompt pool is negligible compared with
that of the MLM. For example, in our experiments, the
MLM has 109.52× 106 parameters, while the prompt pool
has only 55, 296.

The prompt pool can be considered as shared meta-
knowledge. Given an input x, the attention weights
between x and the K prompts are computed as a =
softmax(Kqx√

do
), where softmax(·) is the softmax function,

K = [k>1 ; . . . ;k
>
K ], and qx ∈ Rdo is the embedding of the

[MASK] output by a pre-trained and frozen MLM with the
wrapped input (e.g., (x. Topic is [MASK])) (Wang
et al., 2022a;b). Such a mapping from x to qx is called the
query function q(·). An instance-dependent prompt is then
generated by weighted averaging over all the values (θi’s):

θx(K,Θ) =

K∑
i=1

aiθi, (4)

where Θ = [θ1; . . . ;θK ]. While Wang et al. (2022a;b) only
select the top-N most similar prompts from the pool, in (4)
all the prompts are used and updated simultaneously.

The proposed procedure for meta-learning the prompt pool
(K,Θ), which will be called MetaPrompter, is shown in
Algorithm 2. The MAML algorithm (Finn et al., 2017) is
used here, but other meta-learning algorithms (e.g., Rep-
tile (Nichol et al., 2018), BMG (Flennerhag et al., 2022))
can also be used. At iteration t, the base learner takes
(Kt−1,Θt−1) and a task τ to optimize for a task-specific
prompt pool by gradient descent (steps 4-15). (Kt−1,Θt−1)
is used as the initialization (step 4). For each inner itera-
tion j, (Kt,j−1,Θt,j−1) constructs the instance-dependent
prompts θx,j(Kt,j−1,Θt,j−1) in (4) (steps 7 and 8). Next,
θx,j is used to predict the label probability with a com-
bination of the hand-crafted verbalizer (step 9) and soft
verbalizer (steps 11 and 12):

P(y|x;θx,j)=(1− λ)P̂(y|x;θx,j) + λP̃(y|x;θx,j), (5)

where λ ∈ [0, 1] (in the experiments, we set λ = 0.5). Let
L(Sτ ;Kt,j−1,Θt,j−1) = −

∑
(x,y)∈Sτ logP (y|x;θx,j)

be the loss on Sτ (step 13). The base learner builds a
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Algorithm 2 MetaPrompter.
Require: prompt length Lp; size of prompt pool K; λ = 0.5; step sizes α, η; meta-parameters (K,Θ); query function q(·);

1: for t = 1, . . . , T do
2: sample a task τ = (Sτ ,Qτ ) ∈ T ;
3: base learner:
4: (Kt,0,Θt,0) ≡ (Kt−1,Θt−1);
5: for j = 1, . . . , J do
6: for (x, y) ∈ Sτ do
7: compute qx by q(·);
8: θx,j(Kt,j−1,Θt,j−1) = softmax(Kt,j−1qx)

>Θt,j−1;
9: feed x̃ ≡ T(x;θx,j) intoM, obtain h[MASK](x̃), and P̂(y|x;θx,j) by (1);

10: end for
11: call ComputeLabelEmbedding(Sτ ) of Algorithm 1 to obtain {vy : y ∈ Yτ};
12: for(x,y)∈Sτ , call Predict(x;vy :y∈Yτ) of Algorithm 1 to obtain P̃(y|x;θx,j), and compute P(y|x;θx,j) by (5);
13: L(Sτ ;Kt,j−1,Θt,j−1) = −

∑
(x,y)∈SτlogP(y|x;θx,j);

14: (Kt,j ,Θt,j) = (Kt,j−1,Θt,j−1)− α∇(Kt,j−1,Θt,j−1)L(Sτ ;Kt,j−1,Θt,j−1);
15: end for
16: meta-learner:
17: for (x, y) ∈ Qτ do
18: compute qx by q(·);
19: θx,J(Kt,J ,Θt,J) = softmax(Kt,Jqx)

>Θt,J ;
20: call Predict(x;vy : y ∈ Yτ ) of Algorithm 1 to obtain P̃(y|x;θx,J);
21: compute P̂(y|x; θx,J) and P(y|x;θx,J) by (1) and (5), respectively;
22: end for
23: L(Qτ ;Kt,J ,Θt,J) = −

∑
(x,y)∈Qτ logP(y|x;θx,J);

24: (Kt,Θt) = (Kt−1,Θt−1)− η∇(Kt−1,Θt−1)L(Qτ ;Kt,J ,Θt,J);
25: end for
26: return (KT ,ΘT ).

task-specific prompt pool (Kt,J ,Θt,J) by taking J gradient
updates (j = 1, . . . , J) at step 14:

(Kt,j,Θt,j)=(Kt,j−1,Θt,j−1)−α∇(Kt,j−1,Θt,j−1)
L(Sτ ;Kt,j−1,Θt,j−1).

The meta-learner takes (Kt,J ,Θt,J) and Qτ to up-
date the meta-parameters (steps 17-24). For (x, y) ∈
Qτ , we use (Kt,J ,Θt,J) to generate its prompt
θx,J(Kt,J ,Θt,J) (steps 18 and 19), which is used for
make prediction P (y|x;θx,J) (steps 20 and 21). Let
L(Qτ ;Kt,J ,Θt,J) = −

∑
(x,y)∈Qτ logP (y|x;θx,J) be

the negative log-likelihood loss on Qτ (step 23). The meta-
learner updates the meta-parameters by performing one gra-
dient descent step on L(Qτ ;Kt,J ,Θt,J) at step 24:

(Kt,Θt)=(Kt−1,Θt−1)−η∇(Kt−1,Θt−1)L(Qτ ;Kt,J ,Θt,J).

The meta-gradient ∇(Kt−1,Θt−1)L(Qτ ;Kt,J ,Θt,J) =
∇(Kt,J ,Θt,J )L(Qτ ;Kt,J ,Θt,J)∇(Kt−1,Θt−1)(Kt,J ,Θt,J)
requires back-propagating through the entire inner opti-
mization path, which is computationally infeasible for large
models and J is large. To reduce the computational cost,
we discard the second-order derivative and use the first-
order approximation ∇(Kt−1,Θt−1)L(Qτ ;Kt,J ,Θt,J) ≈

∇(Kt,J ,Θt,J)L(Qτ ;Kt,J ,Θt,J) (step 24) as in (Finn et al.,
2017; Hou et al., 2022).

3.2.2. META-TESTING

Given an unseen task τ ′ = (Sτ ′ ,Qτ ′), the base learner
takes Sτ ′ and (KT ,ΘT ) to build a task-specific prompt pool
(KT,J ,ΘT,J) as in steps 4-15. This pool is then used to
construct instance-dependent prompts θx,J for each (x, ·) ∈
Qτ ′ . The MLM receives the wrapped input x̃ ≡ T(x;θx,J)
and predicts the label probability by (5).

3.2.3. METAPROMPTER IS PARAMETER-EFFICIENT

As MetaPrompter only tunes (K,Θ), the total number of
meta-parameters is K(do + Lpdi) (where di and do are the
dimensions of the input and feature embeddings, respec-
tively). This is much smaller than that of MetaPrompting
(which is equal to dφ+Lpdi, where dφ is the size of φ), as it
requires tuning the whole MLM. For example, in the experi-
ments, we use BERT (with do = di = 768, dφ = 109×106)
and K = Lp = 8 in MetaPrompter.
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4. Experiments
4.1. Setup

Following Chen et al. (2022), we perform few-shot classi-
fication on six popularly used data sets: (i) 20News (Lang,
1995), which contains informal discourses from news dis-
cussion forums of 20 topics; (ii) Amazon (He & McAuley,
2016), which consists of customer reviews from 24 prod-
ucts. The task is to classify reviews into product categories;
(iii) HuffPost (Misra, 2022), which contains news head-
lines of 41 topics published in the HuffPost between 2012
and 2018. These headlines are shorter and less grammat-
ical than formal sentences, thus are more challenging for
classification; (iv) Reuters (Lewis, 1997), which is a col-
lection of Reuters newswire articles of 31 topics from 1996
to 1997; (v) HWU64 (Liu et al., 2019), which is an in-
tent classification data set containing user utterances of 64
intents; (vi) Liu54 (Liu et al., 2019), which is an imbal-
anced intent classification data set of 54 classes collected on
Amazon Mechanical Turk. We use the meta-training/meta-
validation/meta-testing splits provided in Chen et al. (2022).
A summary of the data sets is in Table 1.

Following (Bao et al., 2020; Han et al., 2021; Chen et al.,
2022; Hou et al., 2022), we perform experiments in the
5-way 1-shot and 5-way 5-shot settings with 15 query sam-
ples per class. The pre-trained BERT (bert-base-uncased)
from HuggingFace (Wolf et al., 2020) is used as the pre-
trained MLM as in (Chen et al., 2022; Hou et al., 2022).
Experiments are run on a DGX station with 8 V100 32GB
GPUs. The experiment is repeated three times with different
random seeds.

Table 1. Statistics of the data sets.
#classes #samples #tokens per sample

(meta-train/valid/test) (mean ± std)

20News 8/5/7 18, 820 340± 151
Amazon 10/5/9 24, 000 140± 32
HuffPost 20/5/16 36, 900 11± 4
Reuters 15/5/11 620 168± 136
HWU64 23/16/25 11, 036 7± 3
Liu54 18/18/18 25, 478 8± 4

4.2. Evaluation on RepVerb

First, we compare the performance of the proposed RepVerb
with state-of-the-art soft verbalizers: (i) WARP (Ham-
bardzumyan et al., 2021)3, and (ii) ProtoVerb (Cui et al.,
2022). As the focus is on evaluating verbalizers, all methods
use the same discrete prompt “Topic is [MASK]”, and
fine-tune all parameters for 5 steps with a learning rate of
0.00005 as in Cui et al. (2022).

Results. Table 2 reports the meta-testing accuracies. As

3Note that the verbalizer of WARP is the same as that of
DART (Zhang et al., 2022). Its implementation is described in
Appendix A.

can be seen, RepVerb outperforms WARP and ProtoVerb on
both the 1-shot and 5-shot settings.

Figure 2 shows the t-SNE visualization of the embeddings
(h[MASK](x)’s) of 100 samples (x’s)4 and learned label
embeddings (vy’s) for a random 5-way 5-shot task from
Reuters.5 As can be seen, the RepVerb embedding is more
discriminative and compact than those of WARP and Pro-
toVerb. Moreover, by design, RepVerb’s label embedding
is consistent with the samples’ feature embeddings, while
those of WARP and ProtoVerb are not.

(a) WARP. (b) ProtoVerb. (c) RepVerb.
Figure 2. t-SNE visualization of [MASK]’s embeddings (crosses)
and label embeddings (circles) for a 5-way 5-shot task randomly
sampled from Reuters.

4.3. Evaluation on MetaPrompter

We compare MetaPrompter with a variety of base-
lines. These include state-of-the-art prompt-based meth-
ods of (i) MetaPrompting (Hou et al., 2022), and
its variants (ii) MetaPrompting+WARP / MetaPrompt-
ing+ProtoVerb / MetaPrompting+RepVerb, which com-
bine MetaPrompting with the soft verbalizer of WARP
/ ProtoVerb / RepVerb, respectively. Moreover, we
also compare with the non-prompt-based methods of:
(iii) HATT (Gao et al., 2019), which meta-learns a pro-
totypical network (Snell et al., 2017) with a hybrid attention
mechanism; (iv) DS (Bao et al., 2020), which learns atten-
tion scores based on word frequency; (v) MLADA (Han
et al., 2021), which uses an adversarial domain adaptation
network to extract domain-invariant features during meta–
training; and (vi) ContrastNet (Chen et al., 2022), which
performs feature extraction by contrastive learning.

For MetaPrompter, hyperparameters K and Lp are chosen
from {1, 2, 4, 8, 16, 32, 64} using the meta-validation set.
For the base learner, α = 0.1, and J = 5 (resp. 15) at meta-
training (resp. meta-validation or meta-testing). We train the
prompt pool for T = 3, 000 iterations using the Adam opti-
mizer (Kingma & Ba, 2015) with a learning rate of 0.001.
To prevent overfitting, we evaluate the meta-validation per-
formance every 50 iteration and choose the checkpoint with
the best meta-validation performance for meta-testing. For
the hand-crafted verbalizer used in (1), label tokens are ob-
tained by tokenizing the class name and its synonyms as in
(Hou et al., 2022; Hu et al., 2022b). Following Lester et al.

45-way × (5 support samples + 15 query samples) = 100.
5Results on the other data sets are in Figure 7 of Appendix B.
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Table 2. Meta-testing accuracy of various verbalizers on 5-way few-shot classification.
20News Amazon HuffPost Reuters HWU64 Liu54

5-shot
WARP (Hambardzumyan et al., 2021) 61.43± 0.15 59.53± 0.20 46.31± 0.31 68.67± 0.71 68.60± 0.40 73.11± 0.26

ProtoVerb (Cui et al., 2022) 71.33± 0.11 71.74± 0.21 57.93± 0.17 80.93± 0.54 73.43± 0.51 76.19± 0.33
RepVerb 78.81± 0.08 77.56± 0.16 61.90± 0.08 88.33± 0.40 78.37± 0.49 82.14± 0.23

1-shot
WARP (Hambardzumyan et al., 2021) 49.87± 0.63 48.94± 0.34 38.21± 0.35 52.88± 0.67 53.20± 0.76 58.68± 0.64

ProtoVerb (Cui et al., 2022) 54.13± 0.46 55.07± 0.27 41.40± 0.21 57.27± 0.73 55.17± 0.81 60.16± 0.37
RepVerb 59.86± 0.38 59.18± 0.31 44.65± 0.20 63.63± 0.41 59.83± 0.71 66.17± 0.40

Table 3. Number of parameters and 5-way 5-shot classification meta-testing accuracy. Results marked with † are from Chen et al. (2022).
“–” indicates that the corresponding result is not reported in Chen et al. (2022).

#param (×106) 20News Amazon HuffPost Reuters HWU64 Liu54

HATT† (Gao et al., 2019) 0.07 55.00 66.00 56.30 56.20 - -
DS† (Bao et al., 2020) 1.73 68.30 81.10 63.50 96.00 - -

MLADA† (Han et al., 2021) 0.73 77.80 86.00 64.90 96.70 - -
ContrastNet† (Chen et al., 2022) 109.52 71.74 85.17 65.32 95.33 92.57 93.72

MetaPrompting (Hou et al., 2022) 109.52 85.67± 0.44 84.19± 0.30 72.85± 1.01 95.89± 0.23 93.86± 0.97 94.01± 0.26
MetaPrompting+WARP 109.52 85.81± 0.48 85.54± 0.20 71.71± 0.72 97.28± 0.30 93.99± 0.76 94.33± 0.27

MetaPrompting+ProtoVerb 109.52 86.18± 0.51 84.91± 0.38 73.11± 0.80 97.24± 0.25 93.81± 0.81 94.38± 0.18
MetaPrompting+RepVerb 109.52 86.89± 0.39 85.98± 0.28 74.62± 0.88 97.32± 0.31 94.23± 0.67 94.45± 0.33

MetaPrompter 0.06 88.57± 0.38 86.36± 0.24 74.89± 0.75 97.63± 0.22 95.30± 0.51 95.47± 0.21

Table 4. Number of parameters and 5-way 1-shot Meta-testing classification accuracy. Results marked with † are from Chen et al. (2022).
“–” indicates that the corresponding result is not reported in Chen et al. (2022).

#param (×106) 20News Amazon HuffPost Reuters HWU64 Liu54

HATT† (Gao et al., 2019) 0.07 44.20 49.10 41.10 43.20 - -
DS† (Bao et al., 2020) 1.73 52.10 62.60 43.00 81.80 - -

MLADA† (Han et al., 2021) 0.73 59.60 68.40 64.90 82.30 - -
ContrastNet† (Chen et al., 2022) 109.52 71.74 76.13 53.06 86.42 86.56 85.89

MetaPrompting (Hou et al., 2022) 109.52 82.46± 0.50 76.92± 0.77 68.62± 0.56 92.56± 0.77 91.06± 0.41 87.79± 0.29
MetaPrompting +WARP 109.52 82.93± 0.39 78.27± 0.72 67.78± 0.41 94.74± 0.56 91.30± 0.35 88.69± 0.26

MetaPrompting+ProtoVerb 109.52 83.15± 0.41 78.19± 0.65 68.96± 0.52 95.26± 0.40 91.27± 0.63 90.05± 0.15
MetaPrompting+RepVerb 109.52 84.13± 0.30 78.59± 0.43 69.02± 0.51 95.78± 0.33 91.32± 0.44 90.13± 0.20

MetaPrompter 0.06 84.62± 0.29 79.05± 0.21 67.12± 0.23 96.34± 0.20 92.11± 0.30 93.72± 0.18

(2021), prompts are initialized from input embeddings of
randomly sampled label tokens for both MetaPrompting and
MetaPrompter.

Results. Table 3 shows the number of parameters and
meta-testing accuracy in the 5-shot setting. As can be
seen, MetaPrompter is more accurate than both prompt-
based and non-prompt-based baselines. Moreover, since
MetaPrompter only tunes the prompt pool and keeps the
language model frozen, it has much fewer meta-parameters
than MetaPrompting and ContrastNet.

Furthermore, MetaPrompting+RepVerb performs bet-
ter than MetaPrompting+WARP and MetaPrompt-
ing+ProtoVerb, demonstrating that the proposed RepVerb is
also beneficial to MetaPrompting.

Table 4 shows the number of parameters and meta-testing ac-
curacy in the 5-way 1-shot setting. As can be seen, the state-
of-the-art prompt-based methods always achieve higher ac-
curacies than the non-prompt-based ones. Furthermore,
MetaPrompter performs the best on 5 of the 6 data sets.
Besides, RepVerb is again useful to MetaPrompting on all
six data sets.

1 2 3 4 5 6 7 8
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Figure 3. Distribution of attention weights on 5-way 5-shot classi-
fication of Reuters (15 topics).

4.4. Visualization

In this section, we visualize the meta-knowledge in the
prompt pool learned from the 5-way 5-shot classification
task on Reuters. Table 5 shows the nearest tokens to each of
the K (= 8) learned prompts. Figure 3 shows the average
attention weights between the K prompts and meta-training
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Table 5. Nearest tokens to the learned prompts for Reuters.

prompt id nearest tokens

1 copper, steel, trading, gas, fx, aluminum, earn, coffee
2 gross, ship, index, money, gold, tin, iron, retail
3 product, cpi, industrial, acquisitions, jobs, supplying, orange, sugar
4 cocoa, production, grain, livestock, wholesale, cotton, bop, crude
5 oil, national, rubber, nat, interest, price, reserves, regional
6 nat, wholesale, sugar, golden, reserves, drinks, production, product
7 chocolate, sugar, cheat, orange, trade, fx, cash, acquiring
8 aluminum, livestock, cpc, tin, shops, wheat, petrol, supply
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Figure 4. Cosine similarities between learned prompt tokens and topic embeddings on 5-way 5-shot classification of Reuters. In the x-axis,
(i, j) stands for the jth row of θi (i.e., θ(j)

i )

samples belonging to class (topic) y:

1

|Ty|
∑
τ∈Ty

1

|Sτ,y|
∑

(x,y)∈Sτ,y

softmax

(
KT,Jqx√

do

)
,

where Ty is the subset of tasks in T having class y. As
can be seen, samples from each target class prefer prompts
whose tokens are related to that class. For example, samples
from the topic cocoa tend to use the 4th and 7th prompts
(whose tokens are close to words like cocoa, chocolate as
can be seen from Table 5), while samples from the topic
coffee tend to use the 1st and 6th prompts (whose tokens are
close to words like coffee and sugar.

Recall that the prompt pool has K learnable prompts
{(ki,θi) : i = 1, . . . ,K}, with key ki ∈ Rdo and value
θi ∈ RLp×di . Let θ(j)

i be the jth row of θi. Moreover,
let 1
|Vy|

∑
w∈Vy E(w) be the embedding of topic (class) y,

where Vy is a set of tokens relevant to label y (obtained
from Hou et al. (2022)), and E(·) is the input embedding.
Figure 4 shows the cosine similarities between the learned
prompt tokens {θ(j)

i : i = 1, . . . ,K, j = 1 . . . , Lp} and
topic embeddings. As can be seen, embedding of cocoa is
close to θ

(1)
4 and θ

(1)
7 . Thus, samples from cocoa prefer the

4th and 7th prompts (Figure 3). Similarly, embedding of
coffee is close to θ

(8)
1 and θ

(6)
6 . Thus, samples from coffee

prefer the 1st and 6th prompts (Figure 3).

4.5. Ablation Study

In this section, we perform ablation study using the 5-way
5-shot setting in Section 4.3.

4.5.1. EFFECT OF K

Figure 5 shows the 5-way 5-shot meta-testing accuracy of
MetaPrompter with varying K. As K increases, more task
knowledge can be extracted and the meta-testing accuracy
increases. However, using a very large K (e.g., 64) is un-
necessary and the accuracy flattens.

4.5.2. EFFECT OF Lp

Figure 6 shows the 5-way 5-shot meta-testing accuracy of
MetaPrompter with varying Lp. As Lp increases, the meta-
testing accuracy increases as the expressive power of the
prompt pool is enhanced. However, using a very large Lp is
again unnecessary and the accuracy flattens.

4.5.3. EFFECT OF VERBALIZER

Table 6 shows the number of parameters and meta-testing ac-
curacy of MetaPrompter with hand-crafted verbalizer (used
in (5)) and RepVerb. As can be seen, RepVerb is better than
the hand-crafted verbalizer, and combining both yields the
best result.
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Figure 5. Effect of K (in log-scale) on 5-way 5-shot classification (Lp = 8).
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Figure 6. Effect of Lp (in log-scale) on 5-way 5-shot classification (K = 8).

Table 6. 5-way 5-shot classification meta-testing accuracy of MetaPrompter with different verbalizers.

verbalizer
20News Amazon HuffPost Reuters HWU64 Liu54hand-crafted RepVerb

3 7 85.91 81.96 70.37 95.91 91.89 90.32
7 3 87.12 86.05 72.63 96.69 95.25 93.35
3 3 88.57 86.36 74.89 97.63 95.30 95.47

Table 7. 5-way 5-shot classification meta-testing accuracy by using BMG to learn the prompt pool.

#param (×106) 20News Amazon HuffPost Reuters HWU64 Liu54

MetaPrompting+BMG 109.52 85.71 83.47 73.92 96.27 93.31 93.04
MetaPrompter+BMG 0.06 87.91 86.45 74.99 98.01 95.41 94.52

4.5.4. INTEGRATION WITH OTHER META-LEARNING
ALGORITHMS

While the MAML algorithm (Finn et al., 2017) is used
in Algorithm 2, other meta-learning algorithms can also
be used to learn the prompt pool in MetaPrompter or
the meta-initialized prompt in MetaPrompting. In this
experiment, we replace MAML with the state-of-the-art
BMG (Flennerhag et al., 2022). Table 7 shows the meta-
testing accuracy and number of parameters. As can
be seen, MetaPrompter+BMG consistently outperforms
MetaPrompting+BMG.

5. Conclusion
In this paper, we proposed MetaPrompter, an effective and
parameter-efficient algorithm for prompt tuning. It com-
bines structured prompting and a novel verbalizer called
RepVerb. A prompt pool structure is used to construct

instance-dependent prompts by attention, while RepVerb
builds label embedding by averaging feature embeddings of
the corresponding training samples. The pool of prompts
is meta-learned from the meta-training tasks. Experimen-
tal results demonstrate the effectiveness of the proposed
MetaPrompter and RepVerb.

One limitation is that MetaPrompter is based on meta-
learning, and so requires the availability of a set of meta-
training tasks.
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A. Implementation of WARP
WARP (Hambardzumyan et al., 2021) is developed for supervised learning with limited samples. The proposed RepVerb
(Algorithm 1) is also designed for the supervised learning setting. In the meta-learning procedure in Algorithm 2, it is used
in the inner level (steps 4-15) which is also supervised.

Given a meta-testing task τ ′ = (Sτ ′ ,Qτ ′) with label set Yτ ′ , let V ≡ {vy : y ∈ Yτ ′} be τ ′’s learnable label embeddings,
and φ be the MLM parameter. For an input x, the distribution for labels y ∈ Yτ ′ is predicted as:

P(y|x;φ,V) =
exp(v>y h[MASK](x̃))∑

y′∈Yτ exp(v
>
y′h[MASK](x̃))

, (6)

where h[MASK](x̃) is the [MASK]’s embedding of wrapped input x̃. (φ,V) is learned by performing T = 5 gradient
updates to minimize the negative log-likelihood loss on the support set Sτ ′ :∑

(x,y)∈Sτ′

− logP(y|x;φ,V).

φ is initialized by the pre-trained MLM, while V is initialized randomly. The learned (φ,V) is then evaluated on Qτ ′ . For
a test sample (x?, ·) ∈ Qτ ′ , its prediction is given by (6). We run the WARP algorithm on all meta-testing tasks and report
the average meta-testing accuracy in Table 2.

B. Visualization for Verbalizers
Figure 7 shows the t-SNE visualization of the embeddings (h[MASK](x)’s) of 100 samples (x’s) and learned label embeddings
(vy’s) of a 5-way 5-shot task randomly from 20News, Amazon, HuffPost, HWU64, and Liu54. As shown, the RepVerb
embedding is more discriminative and compact than WARP and ProtoVerb. Furthermore, RepVerb’s label embedding is
consistent with the samples’ feature embeddings, while those of WARP and ProtoVerb are not.
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(a) WARP on 20News. (b) ProtoVerb on 20News. (c) RepVerb on 20News.

(d) WARP on Amazon. (e) ProtoVerb on Amazon. (f) RepVerb on Amazon.

(g) WARP on HuffPost. (h)ProtoVerb on HuffPost. (i) RepVerb on HuffPost.

(j) WARP on HWU64. (k) ProtoVerb on HWU64. (l) RepVerb on HWU64.

(m) WARP on Liu54. (n) ProtoVerb on Liu54. (o) RepVerb on Liu54.

Figure 7. t-SNE visualization of [MASK]’s embeddings (crosses) and label embeddings (circles) for a 5-way 5-shot task randomly
sampled from 20News, Amazon, HuffPost, HWU64, and Liu54.
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