

Introduction

- To improve data efficiency, **meta-learning** extracts meta-knowledge from historical tasks to accelerate learning unseen tasks. One representative algorithm MAML [1] learns a globally-shared initialization for all tasks.
- However, real-world environments are usually complex, where task models are diverse and a common meta-model is insufficient to capture all metaknowledge.
- Recently, TSA-MAML [2] based on k-means clustering learns an intialization for tasks in each cluster. However, task model parameters may lie in a subspace mixture. In a linear regression setting where parameters are from a single subspace, previous work [3, 4] uses a moment-based estimator to recover the underlying subspace. However, extension to nonlinearity (such as deep networks) is difficult.
- In this paper, we propose a **model-agnostic** algorithm (called **MUSML**) to learn a subspace mixture for constructing task model parameters. For each task, the base learner builds a task model from each subspace, then the meta-learner updates the subspace bases by minimizing a weighted validation loss of the task models.

- Notations:
 - \mathcal{T} is a collection of tasks for meta-training. Each task $\tau \in \mathcal{T}$ contains a training set \mathcal{D}_{τ}^{tr} and a validation set \mathcal{D}_{τ}^{vl} .
 - $-\mathcal{L}(\mathcal{D};\mathbf{w}) = \frac{1}{|\mathcal{D}|} \sum_{(\mathbf{x},y)\in\mathcal{D}} \ell(f(\mathbf{x};\mathbf{w}),y) \text{ is the loss on } \mathcal{D} \text{ for model } f(\cdot;\mathbf{w}).$
 - Assume task model parameters lie in a subspace mixture $\{S_1, \ldots, S_K\}$. Let $\mathbf{S}_k \in \mathbb{R}^{d imes m}$ be the basis of \mathbb{S}_k , then $\{\mathbf{S}_1, \dots, \mathbf{S}_K\}$ are metaparameters to be learned.
- **Base learner**: In each subspace \mathbb{S}_k , we search for a linear combination to form the task model $\mathbf{w}_{\tau} = \mathbf{S}_k \mathbf{v}_{\tau k}^{\star}$:

$$\mathbf{v}_{\tau,k}^{\star} = \arg\min_{\mathbf{v}_{\tau} \in \mathbb{R}^m} \mathcal{L}(\mathcal{D}_{\tau}^{tr}; \mathbf{S}_k \mathbf{v}_{\tau}).$$

- When $\mathcal{L}(\mathcal{D}; \mathbf{w})$ is convex, use convex program.
- In noncovex case, we seek an approximate minimizer $\mathbf{v}_{\tau,k} = \mathbf{v}_{\tau,k}^{(T_{in})}$: $\mathbf{v}_{\tau,k}^{(t'+1)} = \mathbf{v}_{\tau,k}^{(t')} - \alpha \nabla_{\mathbf{v}_{\tau}^{(t')}} \mathcal{L}(\mathcal{D}_{\tau}^{tr}; \mathbf{S}_{k} \mathbf{v}_{\tau,k}^{(t')}), \text{ for } t' = 0, \dots, T_{in} - 1.$
- Meta-learner:
 - At meta-training, one can assign τ to the subspace with the best training set performance, but such one-hot selection is inefficient for learning meta-parameters as only one subspace is updated at each step.
 - We relax the categorical selection to soft selection and all subspaces can be updated simultaneously. Specifically, let $o_{\tau,k} = \mathcal{L}(\mathcal{D}_{\tau}^{tr}; \mathbf{S}_k \mathbf{v}_{\tau,k})$ be the training loss for task τ when the kth subspace (where k = $1, \ldots, K$) is used to construct its task model. The meta-learner updates $\{S_1, \ldots, S_K\}$ by performing one gradient update on the weighted validation loss

$$\mathcal{L}_{vl}(\mathbf{S}_1,\ldots,\mathbf{S}_K) \equiv \sum_{k=1}^K \frac{\exp(-o_{\tau,k}/\gamma)}{\sum_{k'=1}^K \exp(-o_{\tau,k'}/\gamma)} \mathcal{L}(\mathcal{D}_{\tau}^{vl};\mathbf{S}_k\mathbf{v}_{\tau,k}),$$

where $\gamma > 0$ is the temperature ($\gamma \rightarrow 0$, the selection becomes one-hot; $\gamma \to \infty$, the selection becomes uniform).

• At meta-testing, we assign each testing task to the subspace with the lowest training loss.

Subspace Learning for Effective Meta-Learning

Weisen Jiangot, James T. Kwokt, Yu Zhango Southern University of Science and Technology
[†]Hong Kong University of Science and Technology

Proposed Algorithm

Algorithm 1 MUSML.

Require: stepsize α , $\{\eta_t\}$; #subspaces K, subspace dimension m; $\mathbf{v}^{(0)}$, $\{\gamma_t\}$; 1: for $t = 0, 1, \dots, T - 1$ do sample a task τ with \mathcal{D}_{τ}^{tr} and \mathcal{D}_{τ}^{vl} ; base learner: for k = 1, ..., K do initialize $\mathbf{v}_{\tau k}^{(0)} = \mathbf{v}^{(0)};$ for $t' = 0, 1, \ldots, T_{in} - 1$ do $\mathbf{v}_{\tau,k}^{(t'+1)} = \mathbf{v}_{\tau,k}^{(t')} - \alpha \nabla_{\mathbf{v}_{\tau,k}^{(t')}} \mathcal{L}(\mathcal{D}_{\tau}^{tr}; \mathbf{S}_{k,t} \mathbf{v}_{\tau,k}^{(t')});$ end for $\mathbf{v}_{\tau,k} \equiv \mathbf{v}_{\tau,k}^{(T_{in})};$ $o_{\tau,k} = \mathcal{L}(\mathcal{D}_{\tau}^{tr}; \mathbf{S}_{k,t}\mathbf{v}_{\tau,k});$ 10: end for 11: meta-learner: 12: $\mathcal{L}_{vl} = \sum_{k=1}^{K} \frac{\exp(-o_{\tau,k}/\gamma_t)}{\sum_{k'=1}^{K} \exp(-o_{\tau,k'}/\gamma_t)} \mathcal{L}(\mathcal{D}_{\tau}^{vl}; \mathbf{S}_{k,t} \mathbf{v}_{\tau,k});$ 14: $\{\mathbf{S}_{1,t+1},\ldots,\mathbf{S}_{k,t+1}\} = \{\mathbf{S}_{1,t},\ldots,\mathbf{S}_{k,t}\} - \eta_t \nabla_{\{\mathbf{S}_{1,t},\ldots,\mathbf{S}_{k,t}\}} \mathcal{L}_{vl};$ 15: **end for** 16: **Return** $S_{1,T}, \ldots, S_{K,T}$.

Few-shot Regression

- 1. Synthetic data: (i) a nonlinear model $f(x; \mathbf{w}_{\tau}) = \exp(0.1w_{\tau,1}x) + w_{\tau,2}|\sin(x)|$ in which $\mathbf{w}_{\tau} = [w_{\tau,1}; w_{\tau,2}]$ is randomly sampled from one of the two subspaces (*Line-A* and *Line-B*). (ii) samples are generated by $y = f(x; \mathbf{w}_{\tau}) + f(x; \mathbf{w}_{\tau})$ $0.05 \times \mathcal{N}(0,1).$
- 2. *Pose* data: a real-world pose prediction dataset.

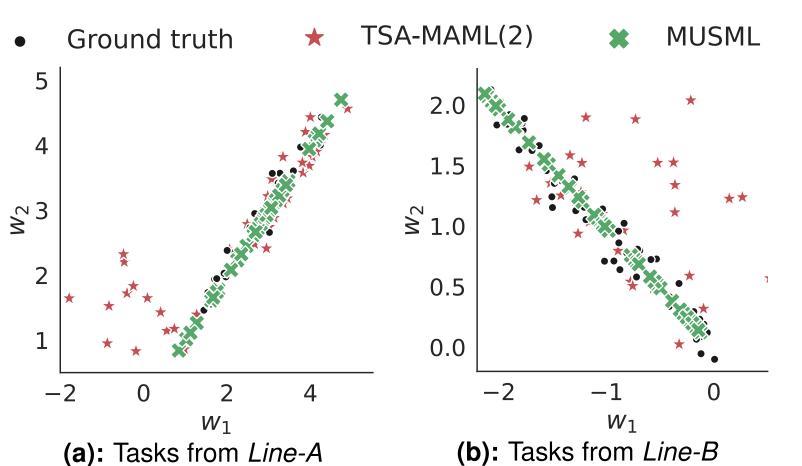


Figure 1: Visualization of task model parameters on synthetic data. MUSML can discover the underlying subspaces.

Table 1: Meta-testing MSE on synthetic data and *Pose* data. *MUSML performs the best.*

	Synthetic data	Pose data
MAML	0.74 ± 0.03	5.39 ± 1.31
MR-MAML	-	2.26 ± 0.09
BMG	0.67 ± 0.03	2.16 ± 0.15
DPMM	0.56 ± 0.09	1.99 ± 0.08
HSML	0.49 ± 0.10	2.04 ± 0.13
ARML	0.60 ± 0.07	2.21 ± 0.15
TSA-MAML	0.58 ± 0.10	1.96 ± 0.07
MUSML	0.07 ± 0.01	1.83 ± 0.05

Few-shot Classification

Table 2: Accuracies of 5-way 5-shot classification on meta-datasets. MUSML is more accurate than both

 structured and unstructured meta-learning methods.

	Meta-Dataset-BTAF	Meta-Dataset-ABF	Meta-Dataset-CIO
MAML	57.78	63.86	74.46
ProtoNet	62.29	65.62	76.51
ANIL	58.57	64.43	74.61
BMG	60.10	65.80	77.46
DPMM	63.00	66.26	76.63
TSA-MAML	63.20	68.17	76.89
HSML	62.39	64.17	75.54
ARML	63.95	64.52	76.12
TSA-ProtoNet	63.57	68.77	77.27
MUSML	66.18	71.10	77.83

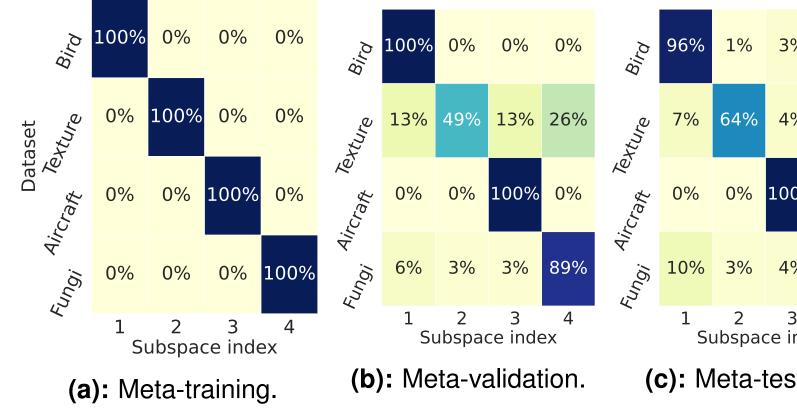


Figure 2: Task assignment to the learned subspaces in 5-way 5-shot setting on Meta-Dataset-BTAF. As can be seen, MUSML can discover the task structure.

Table 3: Accuracies of 5-way 5-shot classification on meta-datasets. MUSML is beneficial for other
 meta-learning algorithms.

	0 0										
			Meta	-Datase	t-BTAF	Meta	-Datase	et-ABF	Meta	Dataset-0	
_	Meta-So	GD		58.93			64.19			75.95	
	MUSML-S	SGD		65.72			69.15			77.48	
	Meta-Curv	/ature		50.02			64.51			76.13	
MUSML-Curvature			;	66.10			69.23			77.96	
accuracies of cross-domain 5-way 5-shot classification (<i>Meta-Dataset-BTAF</i> \rightarrow as et-CIO). MUSML is also effective on unseen domains.											
ЛL	ProtoNet	ANIL	BMG	DPMM	TSA-N	IAML	HSML	ARML	TSA-	ProtoNet	MUSN
25	66.13	65.19	66.98	66.73	66.8	35	65.18	65.37	6	6.92	67.41

Table 4: Ad Meta-Datas

MAML	ProtoNet	ANIL	BMG	DPMM	TSA-MAML	HSML	ARML	TSA-Pro
64.25	66.13	65.19	66.98	66.73	66.85	65.18	65.37	66.9

Summary

- 1. We study meta-learning in complex environments, where task me
- 2. We proposed a model-agnostic algorithm (called MUSML) to lear ture for constructing task model parameters.
- 3. Each subspace can be viewed as a type of meta-knowledge.
- 4. Experimental results confirm the effectiveness of the proposed MUSML.

Reference

[1] Finn, C., Abbeel, P., and Levine, S. Model-agnostic metalearning for fast adaptation of deep networks. In ICML 2017. [2] Zhou, P., Zou, Y., Yuan, X., Feng, J., Xiong, C., and Hoi, S. Task similarity aware meta learning: Theory-inspired improvement on MAML. In UAI 2021 [3] Kong, W., Somani, R., Song, Z., Kakade, S., and Oh, S. Meta-learning for mixed linear regression. In *ICML* 2020. [4] Tripuraneni, N., Jin, C., and Jordan, M. Provable metalearning of linear representations. In *ICML* 2021.

%	0%				
%	24%				
0%	0%				
%	83%				
3 4 ndex					
sting.					

odels are diverse.	
rn a subspace miz	X