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Introduction Few-shot Classification

Proposed Algorithm

» To improve data efficiency, meta-learning extracts meta-knowledge from his-

. . . Algorithm 1 MUSML. : - ] _ £t _ :
torical tasks to accelerate learning unseen tasks. One representative algo- 2 | Table 2: Accuracies of 5-way 5-shot cla§5|f|cat|on on meta-datasets. MUSML is more accurate than both
rithm MAML [1] learns a globally-shared initialization for all tasks. Require: stepsize av, {1):}; #subspaces K, subspace dimension m; v\, {7} structured and unstructured meta-learning methods.
[: fort=0,1,...., 7 — 1do Meta-Dataset-BTAF Meta-Dataset-ABF Meta-Dataset-CIO
« However, real-world environments are usually complex, where task models 2:  sample a task 7 with DY and D'; MAML 57 78 63.86 7446
are diverse and a common meta-model is insufficient to capture all meta- 3. base learner: ProtoNet 62.29 65.62 76.51
knowledge. 4 fork=1,..., K do ANIL 58.57 64.43 74.61
| - | e 1 0) _ _(0). BMG 60.10 65.80 77.46
« Recently, TSA-MAML [2] based on k-means clustering learns an intialization > ‘f”“‘ihze Vrk = V7 o 300 —— E——
for tasks in each cluster. However, task model parameters may lie in a sub- 6: for ¢ . 0,1,.. ') Lin —1do , ' ' '
. . _ . . (t'+1) (t") | b (t')y. TSA-MAML 63.20 68.17 76.89
space mixture. In a linear regression setting where parameters are from a 7 Vok T Vrgp T f?tvvgj;;ﬁ(DT =Sk:,f.VT,k ); HSML 62.39 64.17 75 54
single subspace, previous work [3, 4] uses a moment-based estimator to re- 8: end for | ARML 63.95 64.52 76.12
cover the underlying subspace. However, extension to nonlinearity (such as 9: Vo = vﬂj”); TSA-ProtoNet 63.57 68.77 77.27
deep networks) is difficult. 10: Or ) = E(Df_’f‘; Sk.iVrk): MUSML 66.18 71.10 77.83
- In this paper, we propose a model-agnostic algorithm (called MUSML) to 11:  end .i(;r.
learn a subspace mixture for constructing task model parameters. For each iz ”g“f‘: U exp(oni/ve) LD Sy v 1)
task, the base learner builds a task model from each subspace, then the . oL Lak=1 K exp(—0, 4 /i) T ERETTE S 0% 0% 0%  » [ 0% 0% 0% ,p 1% 3% 0%
meta-learner updates the subspace bases by minimizing a weighted valida- 14: {Stt4+1,---sSke+1) =S, Sktf — Vs, .8, Lol N Q o
tion loss of the task models. 15: end for g @ 0% 0% 0% o 13% 13% 26% o 7% 4% 24%
2 3 S N
16: Return Sl,T;--wSKT g5 & &
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* Notations: Subspace index Subspace index Subspace index
— T is a collection of tasks for meta-training. Each task 7 € 7 contains a (a): Meta-training. (b): Meta-validation.  (c): Meta-testing.
. tr PP vl : . : :
training set D7 and a validation set D7 1. Synthetic data: (i) a nonlinear model f(z; wr) = exp(0.1w; 1) +w; 9| sin(z)] Figure 2: Task assignment to the learned subspaces in 5-way 5-shot setting on Meta-Dataset-BTAF. As
- L(D;w) = ﬁ Z<X y)ED ((f(x;w),y) is the loss on D for model f(-; w). in which w, = |w; 1;w; 2] is randomly sampled from one of the two sub- can be seen, MUSML can discover the task structure.
| L . spaces (Line-A and Line-B). (ii) samples are generated by v = f(z;w,) +
— Assume task model parameters lie in a subspace mixture {S1,...,5x |- P ( )- (i) P J vy =J 7) Table 3: Accuracies of 5-way 5-shot classification on meta-datasets. MUSML is beneficial for other
Ixm . 0.05 x NM(0,1). . .
Let S;. € R be the basis of S;, then {Sy,...,Sg} are meta- meta-learning algorithms.
parameters to be learned. 2. Pose data: a real-world pose prediction dataset. Meta-Dataset-BTAF Meta-Dataset-ABF Meta-Dataset-CIO
- Base learner: In each subspace S;., we search for a linear combination to Meta-SGD 58.93 64.19 75 95
form the task model w., = Skv;‘ . . 2) MUSML-SGD 65.72 69.15 77.48
: truth * TSA-MAML MUSML
. | " * Groundtru * Meta-Curvature 50.02 64.51 76.13
vi =arg min L(D:;Syvy). 5 x ool \ MUSML-Curvature 66.10 69.23 77.96
vrek ot ) Tl <
— When ﬁ(p; W) IS convex, use convex program. 4 *gf’ 1.5 ’:x *:* * Table 4: Accuracies of cross-domain 5-way 5-shot classification (Meta-Dataset-BTAF —
(T;) 3 3}2‘ » oW ok Meta-Dataset-ClO). MUSML is also effective on unseen domains.
_ . _ . _ in). o~ §§€(‘ o~ 4 :*;x;g;‘. *
In ?O”COVGX/ case, we seek an ap?rox'mate miNiMIzer v = Vg = . e = 1.0 SRS MAML ProtoNet ANIL BMG DPMM TSA-MAML HSML ARML TSA-ProtoNet MUSML
(t'+1) _ _(t) tr.q o) / ’ & e |
Vik T Vg T OV tlk)ﬁ(DJ, Skvy ), fort'=0,.... Tip — 1. ‘1, e 0.5 S 64.25 66.13 65.19 66.98 66.73  66.85 6518 65.37  66.92 67.41
T k42X %,
- Meta-learner: 1|, ¥ 0.0 e
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— At meta-training, one can assign 7 to the su.bsp.ace with the best train- W1 " Summary
Ing set performance, but such one-hot selection is inefficient for learning (a): Tasks from Line-A (b): Tasks from Line-B
meta-parameters as only one subspace is updated at each step. Figure 1: Visualization of task model parameters on synthetic data. MUSML can discover the 1. We study meta-learning in complex environments, where task models are diverse.
— We relax the categorical selection to soft selection and all subspaces underlying subspaces. 5 W 9 del i algorith led MUSML! to | . .
can be updated simultaneously. Specifically, let o ;. = L(DY:Spv_ 1) ' t © p;roposet a TO ?—akgnosdlclagorl T (calle ) t0 learn a subspace mix-
o ’ " ure for constructing task model parameters.
be the trglnlng loss for task .7_ when the kth subspace (where £ = Table 1: Meta-testing MSE on synthetic data and Pose data. MUSML performs the best.
1,..., K)Is used to construct its task model. The meta-learner updates , 3. Each subspace can be viewed as a tvpe of meta-knowledage.
: : . : Synthetic data Pose data P yP J
{S1,...,Sg} by performing one gradient update on the weighted valida- | | |
: 4. Experimental results confirm the effectiveness of the proposed MUSML.
tion loss MAML 0.74 £0.03 539+ 1.31 Prop
% : /) MR-MAML : 2.26 £+ 0.09
eXpl(—O0+ 1./
b1 k=1 P07 11/ 7) DPMM  0.56+0.09 1.9 = 0.08
Where Y > () iS the temperature ("y — 0, the Selection beComeS One-hOt; HSML 0.49 & 0.10 2.04+0.13 [1] Finn, C., Abbeel, P., and Levine, S. Model-agnostic metalearning for fast adaptation of deep networks. In ICML 2017.
v — OQ, the selection becomes UnifOrm). ARML 0.60 = 0.07 2.21£0.15 [2] Zhou, P, Zou, Y., Yuan, X., Feng, J., Xiong, C., and Hoi, S. Task similarity aware meta learning: Theory-inspired improvement on MAML. In UA/ 2021.

TSA_MAML 058 j: O 10 196 j: 007 [3] Kong, W., Somani, R., Song, Z., Kakade, S., and Oh, S. Meta-learning for mixed linear regression. In ICML 2020.
MUSML 0.07+0.01 1.83 -+ 0.05 [4] Tripuraneni, N., Jin, C., and Jordan, M. Provable metalearning of linear representations. In ICML 2021.

» At meta-testing, we assign each testing task to the subspace with the lowest
training loss.




