MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models

Longhui Yu^{1,*}, Weisen Jiang^{2,3,*}, Han Shi⁴, Jincheng Yu^{3,4}, Zhengying Liu⁴, Yu Zhang², James T. Kwok³, Zhenguo Li⁴, Adrian Weller^{1,5}, Weiyang Liu^{1,6}

¹University of Cambridge ²SUSTech ³HKUST ⁴Huawei Noah's Ark Lab ⁵The Alan Turing Institute ⁶Max Planck Institute

Methods

Answer Augmentation (AnsAug)

Question: James buys 5 packs of beef that are 4 pounds each. The price of beef is \$5.50 per pound. How much did he pay?

Answer: (sample answers from GPT-3.5-Turbo)

Rephrasing Question

Question: What is the total amount that James paid when he purchased 5 packs of beef, each weighing 4 pounds, at a price of \$5.50 per pound?

Answer: Each pack of beef weighs 4 pounds, so 5 packs weigh 4 * 5 = 20 pounds in total. The price per pound of beef is \$5.50, so the total cost for 20 pounds is 20 * \$5.50 = \$110. ... The answer is: 110

Backward Question by Self-Verification (needs rewriting) (EMNLP 2023)

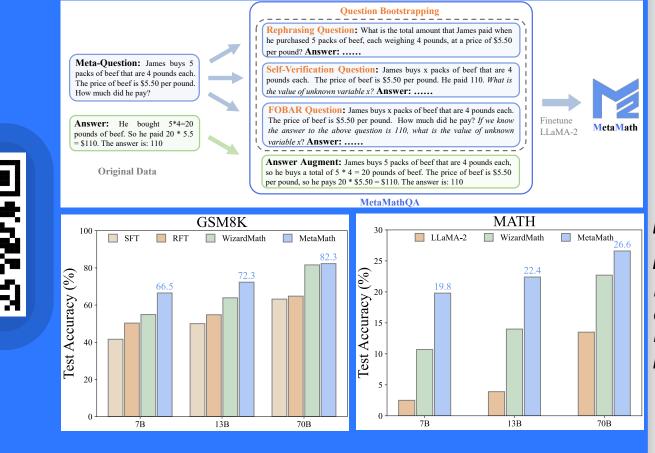
Question: James buys x packs of beef that are 4 pounds each. The price of beef is \$5.50 per pound. He paid 110. What is the value of unknown variable x?

Answer: To solve this problem, we need to determine the value of x, which represents the number of packs of beef that James bought. Each pack of beef weighs 4 pounds and ... The value of x is 5.

Backward Question by FOBAR (Preprint 2023)

Question: James buys x packs of beef that are 4 pounds each. The price of beef is \$5.50 per pound. How much did he pay? If we know the answer to the above question is 110, what is the value of unknown variable > Answer: James buys x packs of beef that are 4 pounds each, so he buys a total of 4x pounds of beef. The price of beef is \$5.50 per pound, so the total cost of the beef is 5.50 * 4x = 22x. ... The value of x is 5.

Datasets: 395K augmented samples by 4 methods on original GSM8K & MATH training data


Dataset	AnsAug	Rephrasing	SV	FOBAR	Overall
MetaMathQA-GSM8K	80K	80K	40K	40K	240K
MetaMathQA-MATH	75K	50K	15K	15K	155K
MetaMathQA	155K	130K	55K	55K	395K

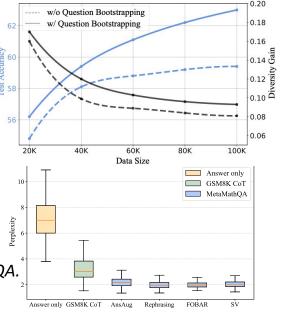
Ablation: data augmented by 4 methods all have performance gains.

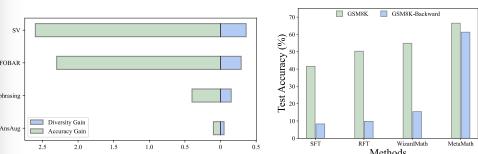
Method	Method GSM8K				MATH							
Wiethou	AnsAug	Rep.	SV	FOBAR	GSM8K	MATH	AnsAug	Rep.	SV	FOBAR	GSM8K	MATH
SFT	X	X	X	X	41.6	3.0	×	X	X	×	13.8	4.7
MetaMath	1	X	X	X	59.6	4.4	1	X	X	×	28.4	12.9
	×	1	X	×	59.7	4.4	×	1	X	×	30.4	12.4
	1	1	X	×	60.6	4.4	1	1	X	×	29.1	15.3
	1	1	1	1	64.4	5.7	1	1	1	1	34.6	17.7

Spotlight

We improve LLM's Math reasoning ability in both forward reasoning & backward reasoning

Scan to code / data / checkpoints




Diversity & Accuracy:

Naïve data augmentation suffers a quick saturation in accuracy. Thanks to high diversity, MetaMath alleviates saturation.

Lower perplexity of MetaMathQA:

Pretrained models (e.g. LLaMA-2) have lower perplexity on MetaMathQA

Left: SV & FOBAR bring higher diversity, resulting in higher performance gains. **Right:** MetaMath achieves better backward reasoning ability than existing methods.

MetaMath on OOD tasks & stronger models:

Performance on DROP dataset Performance on Llemma & Mistral

Different from GSM8K & MATH, On stronger models such as questions in DROP have longer Llemma & Mistral, Metamath reasoning context. MetaMath also boosts performance. performs better than baselines.

J = 1 + 1 = 1		
	#Params	Accuracy (Exact Match)
SFT	7B	25.8
RFT	7B	26.7
WizardMath	7B	31.5
MetaMath	7B	37.1
WizardMath	13B	46.4
MetaMath	13B	49.5
WizardMath	70B	63.1
MetaMath	70B	72.3

	MetaMathQA	GSM8K	MATH
LLaMA-2-7B	×	14.6	2.5
LLawA-2-7D	1	66.5	19.8
LLaMA-2-13B	×	28.7	3.9
	1	72.3	22.4
Llemma-7B	×	36.4	18.0
Lieiiiiia-7D	1	69.2	30.0
Mistral-7B	×	52.2	13.1
wiisu ai- / D	1	77.7	28.2