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Introduction

« Empirical Risk Minimization (ERM) minw £(D; w) and its update rule is

« An adaptive policy: Employ SAM only at w; where loss landscape is locally sharp:

Table 2: Testing accuracy and fraction of SAM updates on CIFAR-10 with different
levels of label noise.

wi = Wi—1 — NVLBE wi1). — when | VL(Bi; wi)||? > 1 + cio0, SAM is used;

« L(D;w) is non-convex and has many local minima with poor generalization. — otherwise, ERM is used. noise =20%  noise =40%  noise =60%  noise = 80%
S o . . Note that wh t red ‘0 SAM: wh t red ‘0 ERM accuracy %SAM accuracy %SAM accuracy %SAM accuracy %SAM
. Shgrpne§s-Aware M|n|m|za£t|c;;1 (SAM) [1] deks flglt mlnlrlng by solving a min-max oteé that wnen ¢ — —oo, It reduces 10 , when ¢ — o0, It reauces 10 : ERM 57 0 0.0 0.8 0.0 10 61 0.0 53 23 0.0
optimization miny el <p (D;w + €) and its update rule is « SAM update is more effective towards the end of training [6], thus, we design a schedule SAM 94.80 100.0  91.50  100.0 88.15 100.0 77.40  100.0
— _ 1 _ 1 i ESAM 94.19  100.0  91.46  100.0  81.30  100.0  15.00  100.0
Wil = wy — VLB wy + pVL(Bywy)). Ct = gx;\(t) = 7A1 + (1 — 7)Ao (decrease c; from Ay to Aq linearly).
_ _ _ _ SS-SAM 90.62  50.0  77.84  50.0  61.18  50.0  47.32  50.0
« The policy can be combined with any SAM variant, e.g., AE-LookSAM for LookSAM. AE-SAM 0984 500 8417 500 7354 499  65.00 500

* Though generalizing better, each SAM update consists of two gradient computa-
tions: one for computing the perturbation and the other for the actual update direc-

tion, thus, is computationally expensive. Proposed Algorithms

LookSAM 92.72 50.0 88.04 50.0 72.26 50.0 69.72 50.0
AE-LookSAM  94.34 49.9 91.58 50.0 87.85 50.0 76.90 50.0

* Prior works on improving the efficiency of SAM:

70 80 N
— ESAM [2] uses fewer samples to compute gradients and updates fewer pa- Algorithm 1 AE-5AM and AE-LookSAM. 60| ——- Em 70| ——- EZ\I\: M“\Tx
rameters, but still requires two gradient computations Require: D, stepsize 7, radius p; A1 and Az for gy, »,(t); « for AE-LookSAM; _ | ESAM o] ESAM N .
— LookSAM [3] switches SAM and ERM periodically fort=0,...,T —1do @50 |~ fs'fé\/i"M 8 | 77 ffof% \
. _ = —— Loo sl 3s0| 7 a
— SS-SAM [4] randomly selects SAM or ERM according to a Bernoulli trial sample a mini-batch data 5; from D; S 40| —---- AE-SAM Sl 87| - AE-SAM '
compute g = VL(B;; w;), update 1 and 02 by EMA; o : 240 | ——-= AE-LookSAM
- Research GAP: Though more efficient, the random or periodic use of SAM is sub- compute ¢; = g, x, (t); £ T oo | AT
optimal as it is not geometry-aware if ||VL(Be;we)||2 > pe + o then = -
20
* Intuitively, SAM is more useful in sharp regions than in flat regions In this paper, 8s = VL(Be; we + pVL(Be; we)); - B R e
we propose an adaptive policy to employ SAM based on loss landscape geometry. if AE-LookSAM: decompose gs as g, = gs — ﬁg”g; g; 100 - e 00
e|Se epoch
A Sharpness Measure !f AE-SAM: g5 = g; (a): Training accuracy. (b): Testing accuracy
if AE-LookSAM: g, = g + a8l g, ;
d if lgvl| SY Figure 3: Accuracies with #epochs on CIFAR-10 (with 80% noise labels).
» Introduce a sharpness measure Eg, | V.L(5;; w2 svr:H' = Wi — 18
, | , | - end for  AE-LookSAM achieves comparable performance with SAM but is faster,
— [|[VL(By; wy)||* = trace of diag ([VL(By; wy)]) (a Hessian approximation). return w. showing AE-LookSAM has the same high level of robustness as SAM.
— ||[VL(B:; wy)||? is related to gradient variance AR ]
) ) Let A be an algorithm whose update in each iteration can be either SAM or ERM. AE-LookSAM performs better than ESAM, S5-SAM, and LookSAM.
Var(VL(B; wi)) = Eg, VLBt w)||” — MVC(@ wi)||” Theorem. Under smoothness and bounded variance assumptions, A satisfies
~(0 when algorithm converges
- . o ° ’ | o 328(L(D;wg) —EL(D; wy)) (14 ¢+ 58%¢)0? Summary
which is positively correlated with the generalization gap [5]. - E[[VL(D; wy)||” < VT (7 60 + T (T—60)
 Figure below shows SAM has a much smaller stochastic gradient norms. _ . .
9u . W Show . g where ( = lZTZ 1&'}5 € |0, 1] is the fraction of SAM updates. : : , -
— I E— - 1 £<t=0 . « Study the problem of improving SAM’s efficiency
o vl e IR o o SAM Remarks: (i) A larger ( leads to a larger upper bound; (ii) ( = 1 recovers SAM.
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: Experiments on CIFAR-10, CIFAR-100, ImageNet

Introduce a sharpness measure: squared stochastic gradient norm

)
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Design an adaptive policy: use SAM in sharp regions, while use ERM in flat
regions
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| o s ) S Table 1: Testing accuracy and fraction of SAM updates (%SAM).

Propose two efficient algorithms: AE-SAM and AE-LookSAM

0 50 eg(())((:)h 150 200 epoch 0 50 100 e;ggh 200 250 300 o
i _ * Results on CIFAR-10, CIFAR-100, and ImageNet show the efficiency and
(a): ResNet-18 (b): WRN-28-10. (c): PyramidNet-110. CIFAR-10 CIFAR-100 magelVe ffecti f the adapiti | ’ g
Accuracy %SAM  Accuracy %SAM  Accuracy %SAM errectiveness of ihe acaptive policy

Figure 1: Squared stochastic gradient norms Ez||VL(B; w;)||* on CIFAR-100.

ERM 95.41 w03 0.0 x00 (817 005 0.0 xo0 7711 2012 0.0 =00 Results on CIFAR-10 with label noise show the robustness of AE-LookSAM

+ Computing E,||VL(By: wy)||” for each iteration is expensive. SAM  96.52 -0 100.0 z00  80.17 zo1s 100.0 200 77.47 2012 100.0 <00
° ||V£<Bt, Wt)H2 can be modeled as a normal distribution N(Nta O.tQ) ESAM 96.50 008 100.0 =00 80.41 +010 100.0 0.0 77.25 z05 100.0 200 Reference
0.04 50 s SS-SAM 96.40 016 90.0 =00 80.10 +016  50.0 o0 77.38 006 0.0 =00

[ ] epoch=180 * epoch=180 2
. — zgzzﬁzégo o 40 ) 2522:230 AE-SAM 96.63 001 00.1 201 80.48 011 49.8 +o0 (743 +006  49.4 +o0
: %30 A LOOKSAM  96.32 2012 20.0 200 79.89 2020 20.0 200 77.13 2000 20.0 200 [1] Sharpness-aware minimization for efficiently improving generalization. ICLR
S %.Eizo X AE-LookSAM 96.56 +021  20.0 =01 80.29 1037 20.0 100 77.29 100s  20.3 00 2021
0.01 410 [2] Efficient sharpness-aware minimization for improved training of neural net-
. ot « Using only 50% of SAM updates, AE-SAM performs better than SAM on CIFAR-10 and works. ICLR 2022
R A ~theoretical quantiles CIFAR-100. [3] Towards efficient and scalable sharpness-aware minimization. CVPR 2022
(a): Distributions (b): Q-Q plots. - The proposed adaptive policy is more effective than the random or periodic policy: [4]_SS'SAM: Stochastic scheduled sharpness-aware minimization for efficiently
Figure 2: Stochastic gradient norms {||VL(B;; w;)||* : B; ~ D} of ResNet-18 on CIFAR-100. | training deep neural networks. Preprint arXiv:2203.09962, 2022
| | | , — AE-SAM performs better than SS-SAM (with about 50% SAM); [5] Fantastic generalization measures and where to find them, ICLR 2020
» Use exponential moving average (EMA) to estimate y; and o3 (0 = 0.9): — AE-LookSAM is better than LookSAM (with about 20% SAM). [6] Towards understanding sharpness-aware minimization, ICML 2022
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pt = opg—1 + (1 = 0)[[VL(Br; wy)||7, of = do;_1 4 (1 = O)([[VL(IBs wi)||” — pe)”.  Like SAM, AE-SAM has much smaller stochastic gradient norm and variance than ERM.



