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Introduction

• Empirical Risk Minimization (ERM) minwL(D;w) and its update rule is

wt = wt−1 − η∇L(Bt;wt−1).

• L(D;w) is non-convex and has many local minima with poor generalization.

• Sharpness-Aware Minimization (SAM) [1] seeks flat minima by solving a min-max
optimization minwmax‖ε‖≤ρL(D;w + ε) and its update rule is

wt+1 = wt − η∇L(Bt;wt + ρ∇L(Bt;wt)).

• Though generalizing better, each SAM update consists of two gradient computa-
tions: one for computing the perturbation and the other for the actual update direc-
tion, thus, is computationally expensive.

• Prior works on improving the efficiency of SAM:

– ESAM [2] uses fewer samples to compute gradients and updates fewer pa-
rameters, but still requires two gradient computations

– LookSAM [3] switches SAM and ERM periodically

– SS-SAM [4] randomly selects SAM or ERM according to a Bernoulli trial

• Research GAP: Though more efficient, the random or periodic use of SAM is sub-
optimal as it is not geometry-aware

• Intuitively, SAM is more useful in sharp regions than in flat regions In this paper,
we propose an adaptive policy to employ SAM based on loss landscape geometry.

A Sharpness Measure

• Introduce a sharpness measure EBt‖∇L(Bt;wt)‖2.

– ‖∇L(Bt;wt)‖2 = trace of diag
(
[∇L(Bt;wt)]

2
)

(a Hessian approximation).

– ‖∇L(Bt;wt)‖2 is related to gradient variance

Var(∇L(Bt;wt)) = EBt‖∇L(Bt;wt)‖2 − ‖∇L(D;wt)‖2︸ ︷︷ ︸
≈0 when algorithm converges

which is positively correlated with the generalization gap [5].

• Figure below shows SAM has a much smaller stochastic gradient norms.
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(a): ResNet-18
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(b): WRN-28-10.
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(c): PyramidNet-110.
Figure 1: Squared stochastic gradient norms EB‖∇L(B;wt)‖2 on CIFAR-100.

• Computing EBt‖∇L(Bt;wt)‖2 for each iteration is expensive.

• ‖∇L(Bt;wt)‖2 can be modeled as a normal distribution N (µt, σ
2
t )
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(b): Q-Q plots.
Figure 2: Stochastic gradient norms {‖∇L(Bt;wt)‖2 : Bt ∼ D} of ResNet-18 on CIFAR-100.

• Use exponential moving average (EMA) to estimate µt and σ2t (δ = 0.9):

µt = δµt−1 + (1− δ)‖∇L(Bt;wt)‖2, σ2t = δσ2t−1 + (1− δ)(‖∇L(Bt;wt)‖2 − µt)2.

Adaptive Policy to Employ SAM

• An adaptive policy: Employ SAM only at wt where loss landscape is locally sharp:

– when ‖∇L(Bt;wt)‖2 ≥ µt + ctσt, SAM is used;

– otherwise, ERM is used.

• Note that when ct→ −∞, it reduces to SAM; when ct→∞, it reduces to ERM.

• SAM update is more effective towards the end of training [6], thus, we design a schedule
ct ≡ gλ1,λ2(t) =

t
Tλ1 + (1− t

T )λ2 (decrease ct from λ2 to λ1 linearly).

• The policy can be combined with any SAM variant, e.g., AE-LookSAM for LookSAM.

Proposed Algorithms

Let A be an algorithm whose update in each iteration can be either SAM or ERM.
Theorem. Under smoothness and bounded variance assumptions, A satisfies

min
0≤t≤T−1

E‖∇L(D;wt)‖2 ≤
32β (L(D;w0)− EL(D;wT ))√

T (7− 6ζ)
+
(1 + ζ + 5β2ζ)σ2

b
√
T (7− 6ζ)

,

where ζ = 1
T

∑T−1
t=0 ξt ∈ [0, 1] is the fraction of SAM updates.

Remarks: (i) A larger ζ leads to a larger upper bound; (ii) ζ = 1 recovers SAM.

Experiments on CIFAR-10, CIFAR-100, ImageNet

Table 1: Testing accuracy and fraction of SAM updates (%SAM).

CIFAR-10 CIFAR-100 ImageNet
Accuracy %SAM Accuracy %SAM Accuracy %SAM

ERM 95.41 ±0.03 0.0 ±0.0 78.17 ±0.05 0.0 ±0.0 77.11 ±0.14 0.0 ±0.0

SAM 96.52 ±0.12 100.0 ±0.0 80.17 ±0.15 100.0 ±0.0 77.47 ±0.12 100.0 ±0.0
ESAM 96.56 ±0.08 100.0 ±0.0 80.41 ±0.10 100.0 ±0.0 77.25 ±0.75 100.0 ±0.0

SS-SAM 96.40 ±0.16 50.0 ±0.0 80.10 ±0.16 50.0 ±0.0 77.38 ±0.06 50.0 ±0.0
AE-SAM 96.63 ±0.04 50.1 ±0.1 80.48 ±0.11 49.8 ±0.0 77.43 ±0.06 49.4 ±0.0

LookSAM 96.32 ±0.12 20.0 ±0.0 79.89 ±0.29 20.0 ±0.0 77.13 ±0.09 20.0 ±0.0
AE-LookSAM 96.56 ±0.21 20.0 ±0.1 80.29 ±0.37 20.0 ±0.0 77.29 ±0.08 20.3 ±0.0

• Using only 50% of SAM updates, AE-SAM performs better than SAM on CIFAR-10 and
CIFAR-100.

• The proposed adaptive policy is more effective than the random or periodic policy:

– AE-SAM performs better than SS-SAM (with about 50% SAM);

– AE-LookSAM is better than LookSAM (with about 20% SAM).

• Like SAM, AE-SAM has much smaller stochastic gradient norm and variance than ERM.

Experiments on CIFAR-10 with Label Noise

Table 2: Testing accuracy and fraction of SAM updates on CIFAR-10 with different
levels of label noise.

noise = 20% noise = 40% noise = 60% noise = 80%
accuracy %SAM accuracy %SAM accuracy %SAM accuracy %SAM

ERM 87.92 0.0 70.82 0.0 49.61 0.0 28.23 0.0

SAM 94.80 100.0 91.50 100.0 88.15 100.0 77.40 100.0
ESAM 94.19 100.0 91.46 100.0 81.30 100.0 15.00 100.0

SS-SAM 90.62 50.0 77.84 50.0 61.18 50.0 47.32 50.0
AE-SAM 92.84 50.0 84.17 50.0 73.54 49.9 65.00 50.0
LookSAM 92.72 50.0 88.04 50.0 72.26 50.0 69.72 50.0

AE-LookSAM 94.34 49.9 91.58 50.0 87.85 50.0 76.90 50.0
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(a): Training accuracy.
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(b): Testing accuracy

Figure 3: Accuracies with #epochs on CIFAR-10 (with 80% noise labels).

• AE-LookSAM achieves comparable performance with SAM but is faster,
showing AE-LookSAM has the same high level of robustness as SAM.

• AE-LookSAM performs better than ESAM, SS-SAM, and LookSAM.

Summary

• Study the problem of improving SAM’s efficiency

• Introduce a sharpness measure: squared stochastic gradient norm

• Design an adaptive policy: use SAM in sharp regions, while use ERM in flat
regions

• Propose two efficient algorithms: AE-SAM and AE-LookSAM

• Results on CIFAR-10, CIFAR-100, and ImageNet show the efficiency and
effectiveness of the adaptive policy

• Results on CIFAR-10 with label noise show the robustness of AE-LookSAM
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