

Southern University of Science and Technology
[†]Hong Kong University of Science and Technology

Introduction

• Empirical Risk Minimization (ERM) $\min_{\mathbf{w}} \mathcal{L}(\mathcal{D}; \mathbf{w})$ and its update rule is

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \eta \nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_{t-1}).$$

- $\mathcal{L}(\mathcal{D}; \mathbf{w})$ is non-convex and has many local minima with **poor generalization**.
- Sharpness-Aware Minimization (SAM) [1] seeks flat minima by solving a min-max optimization $\min_{\mathbf{w}} \max_{\|\boldsymbol{\epsilon}\| < \rho} \mathcal{L}(\mathcal{D}; \mathbf{w} + \boldsymbol{\epsilon})$ and its update rule is

 $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t + \rho \nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t)).$

- Though generalizing better, each SAM update consists of two gradient computations: one for computing the perturbation and the other for the actual update direction, thus, is computationally expensive.
- **Prior works** on improving the efficiency of SAM:
 - ESAM [2] uses fewer samples to compute gradients and updates fewer parameters, but still requires **two** gradient computations
 - LookSAM [3] switches SAM and ERM periodically
 - SS-SAM [4] randomly selects SAM or ERM according to a Bernoulli trial
- **Research GAP**: Though more efficient, the random or periodic use of SAM is suboptimal as it is **not geometry-aware**
- Intuitively, SAM is more useful in sharp regions than in flat regions In this paper, we propose an **adaptive** policy to employ SAM based on loss landscape geometry.

A Sharpness Measure

- Introduce a sharpness measure $\mathbb{E}_{\mathcal{B}_t} \| \nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t) \|^2$.
 - $\|\nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t)\|^2$ = trace of diag ($[\nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t)]^2$) (a Hessian approximation).
 - $\|\nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t)\|^2$ is related to gradient variance

 $\operatorname{Var}(\nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t)) = \mathbb{E}_{\mathcal{B}_t} \| \nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t) \|^2 - \| \nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t) \|^2 + \| \nabla \mathcal{L}(\mathcal{B}$

 $\|\nabla \mathcal{L}(\mathcal{D};\mathbf{w}_t)\|^2$ ≈ 0 when algorithm converges

which is **positively correlated** with the generalization gap [5].

• Figure below shows SAM has a much smaller stochastic gradient norms.

Figure 1: Squared stochastic gradient norms $\mathbb{E}_{\mathcal{B}} \| \nabla \mathcal{L}(\mathcal{B}; \mathbf{w}_t) \|^2$ on *CIFAR-100*.

- Computing $\mathbb{E}_{\mathcal{B}_t} \| \nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t) \|^2$ for each iteration is **expensive**.
- $\|\nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t)\|^2$ can be modeled as a normal distribution $\mathcal{N}(\mu_t, \sigma_t^2)$

(b): Q-Q plots. **Figure 2:** Stochastic gradient norms $\{\|\nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t)\|^2 : \mathcal{B}_t \sim \mathcal{D}\}$ of *ResNet-18* on *CIFAR-100*.

• Use exponential moving average (EMA) to estimate μ_t and σ_t^2 ($\delta = 0.9$):

 $\mu_t = \delta \mu_{t-1} + (1-\delta) \|\nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t)\|^2, \ \sigma_t^2 = \delta \sigma_{t-1}^2 + (1-\delta) (\|\nabla \mathcal{L}(\mathcal{B}_t; \mathbf{w}_t)\|^2 - \mu_t)^2.$

An Adaptive Policy to Employ Sharpness-Aware Minimization

Weisen Jiangot Hansi Yangt Yu Zhango James Kwokt

Let \mathcal{A} be an algorithm whose update in each iteration can be either SAM or ERM. **Theorem.** Under smoothness and bounded variance assumptions, A satisfies

$$\min_{0 \le t \le T-1} \mathbb{E} \|\nabla \mathcal{L}(\mathcal{D}; \mathbf{w}_t)\|^2 \le \frac{32\beta \left(\mathcal{L}(\mathcal{D}; \mathbf{w}_0) - \mathbb{E}\mathcal{L}(\mathcal{D}; \mathbf{w}_T)\right)}{\sqrt{T} \left(7 - 6\zeta\right)} + \frac{\left(1 + \zeta_t + \zeta_t\right)}{b\sqrt{T}}$$

where $\zeta = \frac{1}{T} \sum_{t=0}^{T-1} \xi_t \in [0, 1]$ is the fraction of SAM updates. **Remarks**: (i) A larger ζ leads to a larger upper bound; (ii) $\zeta = 1$ recovers SAM.

Experiments on *CIFAR-10*, *CIFAR-100*, *ImageNet*

Table 1: Testing accuracy and fraction of SAM updates (%SAM	Table 1: Testing	accuracy a	nd fraction	of SAM	updates	(%SAM)
---	------------------	------------	-------------	--------	---------	--------

	CIFA	R-10	CIFAR-100		ImageNet		
	Accuracy	%SAM	Accuracy	%SAM	Accuracy	%SAM	
ERM	95.41 ± 0.03	$0.0{\scriptstyle \pm 0.0}$	$78.17 \scriptstyle~\pm 0.05$	$0.0{\scriptstyle \pm 0.0}$	$77.11{\scriptstyle~\pm0.14}$	$0.0{\scriptstyle \pm 0.0}$	
SAM	$96.52_{\pm 0.12}$	$100.0{\scriptstyle \pm 0.0}$	$80.17_{\pm 0.15}$	$100.0{\scriptstyle \pm 0.0}$	$77.47 \scriptscriptstyle \pm 0.12$	$100.0{\scriptstyle \pm 0.0}$	
ESAM	$96.56{\scriptstyle~\pm 0.08}$	$100.0{\scriptstyle \pm 0.0}$	$80.41{\scriptstyle~\pm0.10}$	$100.0{\scriptstyle \pm 0.0}$	$77.25{\scriptstyle~\pm 0.75}$	$100.0{\scriptstyle \pm 0.0}$	
SS-SAM	96.40 ± 0.16	50.0 ± 0.0	$80.10{\scriptstyle~\pm0.16}$	50.0 ± 0.0	$77.38{\scriptstyle~\pm0.06}$	50.0 ± 0.0	
AE-SAM	$\underline{96.63} \pm 0.04$	$50.1{\scriptstyle \pm 0.1}$	$\underline{80.48}_{\pm 0.11}$	$49.8{\scriptstyle~\pm 0.0}$	77.43 ± 0.06	$49.4{\scriptstyle~\pm 0.0}$	
LookSAM	$96.32_{\pm 0.12}$	$20.0{\scriptstyle \pm 0.0}$	$79.89{\scriptstyle~\pm 0.29}$	20.0 ± 0.0	$77.13{\scriptstyle~\pm0.09}$	20.0 ± 0.0	
AE-LookSAM	$\underline{96.56}_{\pm 0.21}$	$20.0{\scriptstyle \pm 0.1}$	$\underline{80.29}_{\pm 0.37}$	$20.0{\scriptstyle \pm 0.0}$	$\underline{77.29}_{\pm 0.08}$	$20.3{\scriptstyle~\pm0.0}$	

- Using only 50% of SAM updates, AE-SAM performs better than SAM on CIFAR-10 and *CIFAR-100*.
- The proposed adaptive policy is **more effective** than the random or periodic policy:
 - AE-SAM performs better than SS-SAM (with about 50% SAM);
 - AE-LookSAM is better than LookSAM (with about 20% SAM).
- Like SAM, AE-SAM has much smaller stochastic gradient norm and variance than ERM.

 $\frac{\zeta + 5\beta^2 \zeta)\sigma^2}{\overline{T}\left(7 - 6\zeta\right)}$

Experiments on *CIFAR-10* with Label Noise

Table 2: Testing accuracy and fraction of SAM updates on CIFAR-10 with different levels of label noise.

	noise $=20\%$		noise $=40\%$		noise $= 60\%$		noise $= 80\%$	
	accuracy	%SAM	accuracy	%SAM	accuracy	%SAM	accuracy	%SAM
ERM	87.92	0.0	70.82	0.0	49.61	0.0	28.23	0.0
SAM	94.80	100.0	91.50	100.0	88.15	100.0	77.40	100.0
ESAM	94.19	100.0	91.46	100.0	81.30	100.0	15.00	100.0
SS-SAM	90.62	50.0	77.84	50.0	61.18	50.0	47.32	50.0
AE-SAM	92.84	50.0	84.17	50.0	73.54	49.9	65.00	50.0
LookSAM	92.72	50.0	88.04	50.0	72.26	50.0	69.72	50.0
AE-LookSAM	<u>94.34</u>	49.9	91.58	50.0	<u>87.85</u>	50.0	<u>76.90</u>	50.0

- AE-LookSAM performs better than ESAM, SS-SAM, and LookSAM.

Summary

- Study the problem of improving SAM's efficiency
- Introduce a sharpness measure: squared stochastic gradient norm
- Design an adaptive policy: use SAM in sharp regions, while use ERM in flat regions
- Propose two efficient algorithms: AE-SAM and AE-LookSAM
- Results on CIFAR-10, CIFAR-100, and ImageNet show the efficiency and effectiveness of the adaptive policy
- Results on CIFAR-10 with label noise show the robustness of AE-LookSAM

Reference

[1] Sharpness-aware minimization for efficiently improving generalization. ICLR 2021

[2] Efficient sharpness-aware minimization for improved training of neural networks. ICLR 2022

[3] Towards efficient and scalable sharpness-aware minimization. CVPR 2022 [4] SS-SAM: Stochastic scheduled sharpness-aware minimization for efficiently training deep neural networks. Preprint arXiv:2203.09962, 2022 [5] Fantastic generalization measures and where to find them, ICLR 2020

[6] Towards understanding sharpness-aware minimization, ICML 2022

