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Abstract. Sharpness-aware minimization (SAM) is to improve model
generalization by searching for flat minima in the loss landscape. The
SAM update consists of one step for computing the perturbation and
the other for computing the update gradient. Within the two steps,
the choice of the perturbation radius is crucial to the performance of
SAM, but finding an appropriate perturbation radius is challenging. In
this paper, we propose a bilevel optimization framework called LEarn-
ing the perTurbation radiuS (LETS) to learn the perturbation radius for
sharpness-aware minimization algorithms. Specifically, in the proposed
LETS method, the upper-level problem aims at seeking a good pertur-
bation radius by minimizing the squared generalization gap between the
training and validation losses, while the lower-level problem is the SAM
optimization problem. Moreover, the LETS method can be combined
with any variant of SAM. Experimental results on various architectures
and benchmark datasets in computer vision and natural language pro-
cessing demonstrate the effectiveness of the proposed LETS method in
improving the performance of SAM.

Keywords: Sharpness-Aware Minimization · Bilevel Optimization ·
Hyperparameter Optimization

1 Introduction

Deep neural networks have demonstrated remarkable performance across various
fields [17,48], but they tend to overfit on the training data with poor ability of
generalization due to overparameterization [49]. The loss function landscape is
intricate and non-linear, characterized by numerous local minima with varying
generalization capabilities. Several studies [19,26,27] have explored the connec-
tion between the geometry of the loss function surface and the generalization
ability of neural networks, and have revealed that flatter minima tend to result
in better generalization performance than sharper minima [10,26,27,39].
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Sharpness-aware minimization (SAM) [12] is an optimization method that
solves a min-max optimization problem to seek flat minima. Specifically, SAM
aims to find a model parameterized by θ such that its neighbors in parameter
space also have good performance. SAM first computes the worst-case pertur-
bation ϵ that maximizes the training loss within a neighborhood specified by
a perturbation radius ρ, and then minimizes the training loss w.r.t. the per-
turbed model θ + ϵ. Many variants of SAM are proposed to improve its effec-
tiveness [31,36,50,53] and efficiency [24,35,51].

Fig. 1. Classification accuracy of SAM and ASAM with different ρ’s on MRPC using
DeBERTa. As shown, the performance is sensitive to ρ.

The perturbation radius ρ controls the strength of penalizing sharp minima
and plays an important role in SAM [2,12,31,53]. Figure 1 shows the classifica-
tion accuracy of SAM and ASAM [31] w.r.t. different ρ’s on the MRPC dataset
using the DeBERTa network, where the corresponding experimental setups are
shown in Sect. 4.4. As can be seen, SAM and ASAM prefer different ρ’s, and their
performance is sensitive to ρ, emphasizing the crucial need for careful selection
of ρ. To deal with this issue, recent attempts [12,31,53] perform grid search on
ρ, which is straightforward but time-consuming.

To learn the perturbation radius ρ more efficiently, in this paper, we propose
a LEarning the perTurbation radiuS (LETS) method by formulating the learning
of ρ as a bilevel optimization problem. Specifically, in the lower-level problem, a
SAM model is obtained based on the training data and a given ρ, while in the
upper-level problem, ρ is updated by minimizing the gap between the validation
and training losses based on the obtained SAM model, which is a function of ρ.
As the lower-level problem is usually nonconvex, we propose a gradient-based
algorithm for updating model parameters and ρ alternatively. Experiments con-
ducted on several benchmark datasets across diverse fields demonstrate that the
proposed LETS is effective in learning a suitable radius.

In summary, our contributions are three-fold: (i) We formulate the prob-
lem of learning the perturbation radius as bilevel optimization and propose a
gradient-based algorithm (called LETS-SAM) to adjust the radius for SAM. (ii)
We perform extensive experiments on various datasets across computer vision
and natural language process tasks as well as various network architectures across
convolution-based and transformer-based networks to verify that LETS-SAM
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performs better than SAM. (iii) LETS is general and can be combined with any
SAM algorithm. We integrate it into ASAM to propose LETS-ASAM. Experi-
mental results show that LETS-ASAM achieves better performance than ASAM,
demonstrating the proposed LETS is effective.

Notations. Lowercase and uppercase boldface letters denote vectors (e.g., x)
and matrices (e.g., X), respectively. ℓ2-norm of x is denoted by ∥x∥. diag(v) con-
structs a diagonal matrix with the vector v on the diagonal. For a vector v ∈ Rd,
[v]2 ≡ [v21 , . . . , v2d] (resp. |v| ≡ [|v1|, . . . , |vd|]) denotes the elementwise square
(resp. absolute) of v. I is the identity matrix. 1d is a d-dimensional all-ones vec-
tor. Dtr = {(xtr

i , ytri )}Ntr

i=1 , Dvl = {(xvl
i , yvli )}Nvl

i=1 and Dts = {(xts
i , ytsi )}Nts

i=1 repre-
sent the training, validation, and testing datasets, respectively. f(x;θ) denotes
a model parameterized by θ. L(D;θ) = 1

|D|
∑

(xi,yi)∈D ℓ(f(xi;θ), yi) denotes
the loss on data set D using model θ, where ℓ(·, ·) denotes a loss function (e.g.,
cross-entropy loss for classification). ∇L (D;θ) and ∇2L (D;θ) denote the gra-
dient and Hessian of L (D;θ) w.r.t θ, respectively.

2 Related Work

Generalization and Loss Landscape. As deep neural networks are powerful
enough to memorize all training data, seeking a model with better generaliza-
tion ability is crucial to mitigate overfitting. Recently, various works [10,26,27]
conduct extensive experiments on various datasets to study the relationship
between loss landscape and generalization, and found that a flatter minima
results in a better generalization. Therefore, several algorithms are proposed to
improve the generalization ability of models by seeking flatter minima. For exam-
ple, [4,52] add noise to model parameters, SWA and its variants [7,21] average
model parameters during training, [50] penalizes gradient norm, and sharpness-
aware minimization (SAM) as well as its variants [12,31,36,53] solves a min-max
problem to search flat minima explicitly. These approaches have demonstrated
superior results in various fields, including supervised learning [4,12,21,40,50],
transfer learning [12,53], domain generalization [7], federated learning [40], and
natural language processing [3].

Sharpness-Aware Minimization (SAM). SAM [12] seeks flat minima via
solving a min-max optimization problem as

min
θ

max
∥ϵ∥≤ρ

L(Dtr;θ + ϵ), (1)

where ρ > 0 is a perturbation radius. Intuitively, SAM aims to find a model
θ such that all its neighbor models (within an ℓ2 ball of radius ρ) have low
losses. Due to the infeasible computation cost of solving the inner maximization
problem for nonconvex losses, SAM approximates it via the first-order Taylor
approximation and obtains the update rule at iteration t as

θt+1 = θt − η∇L
(
Dtr;θt + ρ

∇L(Dtr;θt)
∥∇L(Dtr;θt)∥

)
,
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where η denotes the step size. Note that SAM involves two gradient calcula-
tions at each iteration. To improve its efficiency, many methods have been pro-
posed to reduce the computation cost of SAM. For example, Look-SAM [35]
and RST [51] employ the SAM update periodically or randomly, respectively,
while AE-SAM [24] proposes an adaptive policy to employ SAM only when the
model is in sharp regions. ESAM [9] proposes to perturb the chosen part of the
model and only uses a selected subset of samples to compute the gradients. To
improve the effectiveness of SAM, GSAM [53] proposes to minimize a surrogate
gap max∥ϵ∥≤ρ L(Dtr;θ + ϵ) − L(Dtr;θ), while RSAM [36] simply injects Gaus-
sian noises to perturb model parameters and ASAM [31] designs an adaptive
sharpness measure by re-scaling.

For most of the SAM-based methods, the perturbation radius ρ is crucial to
their performance [2,12,31,53]. Instead of performing a grid search over ρ by
cross-validation, which is time-consuming, in this paper, we propose a gradient-
based method to learn ρ.

Bilevel Optimization. Bilevel optimization is first introduced in [6] and suc-
cessfully used in a variety of areas, for example, hyperparameter optimization
[11,13,33], meta-learning [13,22,23,47], prompt tuning [25], and reinforcement
learning [44]. Bilevel optimization consists of two problems: a lower-level problem
and an upper-level one. The former acts as a constraint for the latter. When the
lower-level problem is convex, one approach is to reformulate the bilevel prob-
lem as a single-level problem by replacing the lower-level problem with the first-
order optimality condition [1,43]. However, in deep neural networks, problems
are usually nonconvex. Recently, gradient-based first-order methods [14,20,32]
for bilevel optimization have become popular due to their efficiency and effec-
tiveness.

3 The LETS Method

In this section, we formulate the objective function of the LETS method to learn
the perturbation radius ρ as bilevel optimization (i.e., Sect. 3.1) and propose a
gradient-based algorithm to learn ρ (i.e., Sect. 3.2). Considering the generality
of the proposed method, it can be combined with any SAM algorithm, and an
example of integrating it into ASAM [31] is shown in Sect. 3.3.

3.1 Problem Formulation

We consider the SAM optimization in problem (1). Let θ⋆(ρ) be the solution,
which is a function of the perturbation radius ρ. Though SAM has shown to be
effective, its generalization performance is sensitive to the choice of ρ (i.e., Fig. 1).
Instead of using grid search, which is simple but time-consuming, we propose
to learn ρ in an end-to-end manner. To achieve this, we formulate the problem
of learning ρ into bilevel optimization, where the lower-level objective is the
SAM problem and the upper-level objective is a generalization metric for θ⋆(ρ).
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The choice of generalization metric is flexible, for example, the loss value on the
validation set L(Dvl;θ⋆(ρ)), the generalization gap L(Dvl;θ⋆(ρ))−L(Dtr;θ⋆(ρ)),
or its square 1

2

(
L(Dvl;θ⋆(ρ)) − L(Dtr;θ⋆(ρ))

)2. Empirical results (i.e., Table 6
in Sect. 4.8) show that the last is better and therefore is used. Formally, the
objective function of the proposed LETS method is formulated as

min
ρ∈(0,∞)

1
2

(
L(Dvl;θ⋆(ρ)) − L(Dtr;θ⋆(ρ))

)2 (2)

s.t. θ⋆(ρ) = argmin
θ

max
∥ϵ∥≤ρ

L(Dtr;θ + ϵ). (3)

3.2 Learning Perturbation Radius for SAM

When the lower-level problem is convex, one can seek the optimal solution θ⋆(ρ)
by solving the low-level problem (3) and update ρ in the upper level by per-
forming one gradient descent step, where hyper-gradient ∇ρ

1
2 (L(D

vl;θ⋆(ρ) −
L(Dtr;θ⋆(ρ)))2 can be computed by iterative differentiation [38] or approximate
implicit differentiation [29]. However, in deep neural networks, the lower-level
problem is usually nonconvex, thus, seeking θ⋆(ρ) is computationally infeasible.
To address this problem, we propose a gradient-based algorithm for updating
the model parameters and ρ alternatively. The detailed procedure is shown in
Algorithm 1.

At iteration t, we sample a batch Btr
t from the training dataset and Bvl

t from
the validation dataset (i.e., steps 2 and 3). For the lower-level problem, we take
a gradient descent update (i.e., steps 5 and 7) as

θt+1(ρt) = θt − η∇L
(
Dtr;θt + ρtϵ̂

(SAM)
t

)
, (4)

where ϵ̂(SAM)
t ≡ ∇L(Dtr;θt)

∥∇L(Dtr;θt)∥ and η is the step size. Here θt+1(ρt) is an approxi-
mate solution to the SAM problem as we only conduct the gradient descent step
once. Obviously θt+1(ρt) is a function of ρt.

In the upper-level problem, we perform a gradient descent step for updating
ρ (i.e., step 14) as

ρt+1= ρt−β∇ρt

1
2
(L(Dvl;θt+1(ρt)) − L(Dtr;θt+1(ρt)))2,

where β is the step size. ∇ρt
1
2 (L(D

vl;θt+1(ρt)) − L(Dtr;θt+1(ρt)))2 is com-
puted by the chain rule (i.e., steps 11 and 13) as −η∇⊤

θt+1
1
2 (L(D

vl;θt+1) −
L(Dtr;θt+1))2∇2L

(
Dtr;θt+ρtϵ̂

(SAM)
t

)
ϵ̂(SAM)
t . Details of the derivation are pro-

vided in Appendix A. Here the first term of gradient is easy to compute as

∇θt+1

1
2
(L(Dvl;θt+1)−L(Dtr;θt+1))2 = (L(Dvl;θt+1)−L(Dtr;θt+1))

(
∇θt+1L(Dvl;θt+1)−∇θt+1L(Dtr;θt+1)

)
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Algorithm 1. LEarning perTurbation radiuS (LETS-SAM and LETS-ASAM).
Require: training set Dtr, validation set Dvl; stepsizes β and η, #iterations T ; model

parameter θ; initialization ρ0 and θ0; ξ for LETS-ASAM;
1: for t = 0, . . . , T − 1 do
2: sample a mini-batch training data Btr

t from Dtr;
3: sample a mini-batch validation data Bvl

t from Dvl;
4: gtr

t = ∇L(Btr
t ; θt);

5: if LETS-SAM: ĝtr
t = ∇L

(
Btr

t ; θt + ρt
gtr
t

∥gtr
t ∥

)
;

6: if LETS-ASAM: ĝtr
t =∇L

(
Btr

t ; θt + ρt
T2

θ t
gtr
t

∥Tθ t
gtr
t ∥

)
,

where Tθt is computed by Eq. (7);
7: θt+1 = θt − ηĝtr

t ;
8: ḡtr

t = ∇L(Btr
t ; θt+1) and ḡvl

t = ∇L(Bvl
t ; θt+1);

9: ga = (L(Bvl
t ; θt+1) − L(Btr

t ; θt+1))(ḡ
vl
t − ḡtr

t );
10: H = diag([ĝtr

t ]2);
11: if LETS-SAM: gb = H

ḡtr
t

∥ḡtr
t ∥ ;

12: if LETS-ASAM: gb = H
T2

θ t
ḡtr
t

∥Tθ t
ḡtr
t ∥ ;

13: gρ = −g⊤
a gbgρ;

14: ρt+1 = ρt − βηgρ;
15: end for
16: return θT .

(i.e., steps 8 and 9). The second term needs to compute a Hessian, which is
computationally expensive for large models like deep neural networks. Following
[5,28], the Hessian ∇2L

(
Dtr;θt + ρtϵ̂

(SAM)
t

)
can be approximated by a first-

order derivative (i.e., step 10) as

diag
([

∇L
(
Dtr;θt+ρtϵ̂

(SAM)
t

)]2)
. (5)

As proved in Appendix B, LETS-SAM has a convergence rate of O( 1√
T
),

which is the same as SAM [2] and its variants [24,40] under similar conditions.
The details of the theoretical analysis are provided in Appendix B. Hence, adjust-
ing the perturbation radius does not affect the convergence speed.

3.3 LETS-ASAM

As the proposed LETS method is very general and can be integrated into any
variant of SAM, we show an example by combining LETS with the recent state-
of-the-art method ASAM [31]. The combined algorithm called LETS-ASAM is
shown in Algorithm 1.

ASAM defines an adaptive sharpness of the loss function, whose maximiza-
tion region is determined by the normalization operator. Then, the objective
function of ASAM is formulated as

θ⋆(ρ) ≡ argmin
θ

max
∥T−1

θ ϵ∥≤ρ
L(Dtr;θ + ϵ), (6)
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where T−1
θ is a normalization operator at θ. For example, Tθ is defined as Tθ =

diag(|θ|) + ξI for fully-connected layers, where ξ is a positive hyperparameter,
and for convolutional layers, Tθ is defined as

Tθ = diag
([

∥c1∥1d1 , ..., ∥ck∥1dk , |θ̃|
])

+ ξI, (7)

where θ = [c1, . . . , ck, θ̃], ci is the flattened weight vector of the ith convolution
filter with its dimension as di, and θ̃ denote parameters that are not contained
in convolution filters. To integrate LETS into ASAM, we replace the lower-level
problem (3) with problem (6). At iteration t, the update rule at the lower level
(i.e., steps 6 and 7) becomes

θt+1 = θt − η∇L
(
Dtr;θt + ρtϵ̂

(ASAM)
t

)
, (8)

where ϵ̂(ASAM)
t ≡ T2

θ t
∇L(Dtr;θt)

∥Tθ t∇L(Dtr;θt)∥ , while the update rule at the upper level (i.e.,
steps 12 and 13) is

ρt+1=ρt+
βη

2
∇⊤

θt+1

(
L(Dvl;θt+1)−L(Dtr;θt+1)

)2∇2L
(
Dtr;θt+ρtϵ̂

(ASAM)
t

)
ϵ̂(ASAM)
t ,

where the Hessian can be approximately computed by using the first-order
derivative as in Eq. (5).

4 Experiments

In this section, we first compare the proposed LETS-SAM and LETS-ASAM
methods with state-of-the-art SAM-based methods on computer vision tasks
(e.g. CIFAR-10, CIFAR-100, and ImageNet) and natural language processing
(e.g., GLUE and IWSLT’14 DE-EN ) tasks on various architectures. Next, we
evaluate the robustness of LETS-SAM and LETS-ASAM to label noise. Fur-
thermore, we conduct experiments to study the robustness of LETS to the ini-
tialization of ρ (i.e., ρ0) and the effects of different generalization metrics. To
further illustrate the superior performance of LETS, we visualize the loss land-
scapes of models learned by the LETS methods. Finally, we empirically study
the convergence of the proposed LETS method.

Baselines. The proposed methods are compared with ERM, SAM [12],
ESAM [9], RST [51], LookSAM [35], AE-SAM [24], AE-LookSAM [24],
ASAM [31], and GSAM [53]. ESAM selects some of the training samples to
update the model and uses a subset of parameters to compute the perturbation.
RST switches between SAM and ERM randomly for each iteration according
to a Bernoulli trial with a probability 0.5. LookSAM uses SAM for every five
steps. AE-SAM and AE-LookSAM use SAM adaptively. ASAM improves SAM
by using an adaptive sharpness measure while GSAM improves SAM by mini-
mizing a surrogate gap. We use official implementations of those baselines.
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Table 1. Classification accuracy (%) on CIFAR-10 using various architectures. The
better result in each comparison group is underlined and the best result across all the
groups is in bold.

ResNet-18 WideResNet-28-10 PyramidNet-110 ViT-S16

ERM 95.41± 0.03 96.34± 0.12 96.62± 0.10 86.69± 0.11

ESAM 96.56± 0.08 97.29± 0.11 97.81± 0.10 84.27± 0.11

RST 96.40± 0.16 97.09± 0.11 97.22± 0.10 87.38± 0.14

AE-SAM 96.63± 0.04 97.30± 0.10 97.90± 0.09 87.77± 0.13

LookSAM 96.32± 0.12 97.02± 0.12 97.10± 0.11 87.12± 0.20

AE-LookSAM 96.56± 0.21 97.15± 0.08 97.22± 0.11 87.32± 0.11

GSAM 96.61± 0.05 97.39± 0.08 97.65± 0.05 88.33± 0.41

SAM 96.52± 0.12 97.27± 0.11 97.30± 0.10 87.37± 0.09

LETS-SAM 96.81± 0.02 97.49± 0.08 97.79± 0.06 88.83± 0.17

ASAM 96.57± 0.02 97.28± 0.07 97.58± 0.06 90.35± 0.05

LETS-ASAM 96.77± 0.01 97.54± 0.08 97.91± 0.01 90.75± 0.37

4.1 CIFAR-10 and CIFAR-100

Setups. Experiments are conducted on the CIFAR-10 and CIFAR-100
datasets [30], each of which contains 50,000 images for training and 10,000
for testing. We use four network architectures: ResNet-18 [17], WideResNet-28-
10 [48], PyramidNet-110 [15], and ViT-S16 [8]. Following experimental setups in
[12,24,31], the batch size is set to 128, and the SGD optimizer with momentum
0.9 and weight decay 0.0005 is used. In the SGD optimizer, for updating model
parameters, an initial learning rate 0.1 with the cosine learning rate scheduler
is adopted, while we use an initial learning rate of 0.0001 with an exponential
learning rate scheduler to update ρ. We train PyramidNet-100 for 300 epochs,
ViT-S16 for 1200 epochs, and train ResNet-18 and WideResNet-28-10 for 200
epochs. As the CIFAR datasets do not have a held-out validation set, following
the practice introduced in [34], mini-batches of validation data are randomly
sampled from the training set. To ensure ρ is positive, an exponential trans-
formation exp(·) is applied to ρ, i.e., ρ = exp(ν), where ν is an unconstrained
variable to be learned. Experiments are repeated over three random seeds. All
implementation details are summarized in Appendix E.

Results. The experimental results on CIFAR-10 and CIFAR-100 are shown
in Table 1 and 2, respectively. We can find that, by learning the perturbation
radius, LETS-SAM performs better than SAM on all the four architectures.
Compared with ASAM, LETS-ASAM is also better, demonstrating the effective-
ness of the proposed LETS method. Furthermore, on CIFAR-100, LETS-ASAM
achieves the highest accuracy on ResNet-18 and ViT-S16, while LETS-SAM is
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Table 2. Classification accuracy (%) on CIFAR-100 using various architectures. The
better result in each comparison group is underlined and the best result across all the
groups is in bold.

ResNet-18 WideResNet-28-10 PyramidNet-110 ViT-S16

ERM 78.17± 0.05 81.56± 0.14 81.89± 0.15 62.42± 0.22

ESAM 80.41± 0.10 84.51± 0.02 85.39± 0.05 62.11± 0.15

RST 80.10± 0.16 82.89± 0.02 84.90± 0.05 63.18± 0.19

AE-SAM 80.48± 0.11 84.51± 0.11 85.58± 0.10 63.68± 0.23

LookSAM 79.89± 0.29 83.70± 0.12 84.01± 0.06 63.52± 0.19

AE-LookSAM 80.29± 0.37 83.92± 0.07 84.80± 0.13 64.16± 0.23

GSAM 80.27± 0.33 83.80± 0.08 84.91± 0.29 63.21± 0.38

SAM 80.17± 0.15 83.42± 0.05 84.46± 0.05 63.23± 0.25

LETS-SAM 80.71± 0.07 84.78± 0.27 85.86± 0.23 64.66± 0.46

ASAM 80.66± 0.16 83.68± 0.12 85.13± 0.12 66.44± 0.26

LETS-ASAM 81.42± 0.07 84.73± 0.05 85.47± 0.10 66.64± 0.43

Fig. 2. Generalization gap w.r.t. training epochs on CIFAR-100. Best viewed in color.

the best onWideResNet-28-10 and PyramidNet-110. On CIFAR-10, LETS-SAM
achieves the highest accuracy on ResNet-18, while LETS-ASAM outperforms all
the baseline models on WideResNet-28-10, PyramidNet-110, and ViT-S16.

Figure 2 (resp. Figure 7 in Appendix D.3) shows the generalization gap (i.e.,
L(Dts;θt) − L(Dtr;θt)) w.r.t. training epochs on CIFAR-100 (resp. CIFAR-10 )
dataset. As shown, LETS-SAM (resp. LETS-ASAM) has a smaller generalization
gap than SAM (resp. ASAM) when the training process nearly converges, verify-
ing that learning the perturbation radius can reduce the generalization gap.

4.2 ImageNet

Setups. In this section, we conduct experiments on the ImageNet dataset [42],
which contains 1, 281, 167 images for training and 32, 702 images for testing, by
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Table 3. Classification accuracy (%) on the ImageNet dataset. The better result in
each comparison group is underlined and the best result across all the groups is in
bold.

ERM 77.11± 0.14

ESAM 77.25± 0.75

RST 77.38± 0.06

AE-SAM 77.43± 0.06

LookSAM 77.13± 0.09

AE-LookSAM 77.29± 0.08

GSAM 77.20± 0.00

SAM 77.47± 0.12

LETS-SAM 77.67± 0.11

ASAM 77.17± 0.15

LETS-ASAM 77.61± 0.10

using ResNet-50 [17]. Following the experimental setup in [9,24], we use a batch
size of 512, SGD optimizer with momentum 0.9, weight decay 0.0001, an initial
learning rate 0.1 with the cosine learning rate scheduler for model parameters,
and an initial learning rate 0.0001 with the exponential learning rate scheduler
for ρ. The number of training epochs is 90. Mini-batches of validation data are
randomly sampled from the training set as in Sect. 4.1. Experiments are repeated
over three random seeds.

Results. The experimental results on ImageNet are shown in Table 3. We can
find that LETS-SAM performs better than all the baseline methods. Compared
with ASAM, LETS-ASAM achieves a higher accuracy, demonstrating the effec-
tiveness of the proposed LETS.

4.3 IWSLT’14 DE-EN

Fig. 3. Experimental results on IWSLT’14 DE-EN.
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Setups. In this section, we conduct experiments on the IWSLT’14 DE-EN
dataset, which is a widely used dataset for machine translation. Following exper-
imental setups in [31], we use the widely used machine translation architec-
ture: Transformer architecture [45]. We use the Adam optimizer with (β1,β2) =
(0.9, 0.98) and weight decay 0.0001, initial learning rate 0.0005 for model param-
eters, initial learning rate 0.0001 with the exponential learning rate scheduler for
ρ, and a dropout rate 0.3. Label smoothing is adopted with a factor of 0.1. The
number of training epochs is 50. Mini-batches of validation data are randomly
sampled from the training set as in Sect. 4.1. Following [31], we use the BLEU
score as the evaluation metric (higher is better). Experiments are repeated over
three random seeds.

Results. Experimental results on the IWSLT’14 DE-EN dataset are shown in
Fig. 3. We can find that LETS-SAM performs better than SAM and achieves the
best performance, while LETS-ASAM also outperforms ASAM, demonstrating
the effectiveness of the proposed LETS method.

4.4 GLUE

Setups. In this section, we conduct experiments on the GLUE benchmark [46],
which has various corpora and natural language understanding (NLU) tasks.
Each task has respective corpora and metrics. The details of the GLUE bench-
mark are summarized in Appendix C. We fine-tune the pre-trained checkpoint of
the DeBERTa-base model on the GLUE benchmark. Following the experimental
setups in [18], we use Adam optimizer with ϵ = 10−6 and (β1,β2) = (0.9, 0.999),
linear learning rate scheduler with warmup steps and gradient clipping 1.0. Mini-
batches of validation data are randomly sampled from the training set as in
Sect. 4.1. Experiments are repeated over three random seeds.

Results. The experimental results on five NLU tasks of GLUE are shown in
Fig. 4. We can find that LETS-SAM performs better than SAM as shown in
Fig. 4(a). Compared with ASAM, LETS-ASAM achieves better performance
shown in Fig. 4(b), demonstrating the effectiveness of the proposed LETS
method. Due to page limit, the overall results on the GLUE benchmark are
reported in Table 9 of Appendix D, which shows the superiority of the proposed
LETS method.

4.5 Robustness to Label Noise

Setups. SAM has shown to be robust to label noise in training data [12]. In this
section, we follow the experimental setups in [12,24] to study whether learning
the perturbation radius can enhance the robustness of SAM. The ResNet-18 and
ResNet-32 are used. We train the model on a corrupted version of the CIFAR-
10 dataset (with noise levels of 20%, 40%, 60%, and 80%), where the labels
of some training data are flipped randomly while the testing set is kept clean.
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Fig. 4. Testing accuracy on five datasets from GLUE.

We use batch size 128, SGD optimizer with momentum 0.9 and weight decay
0.0005, initial learning rate 0.1 with the cosine learning rate scheduler for model
parameters, and initial learning rate 0.0001 with the exponential learning rate
scheduler for ρ. Mini-batches of validation data are randomly sampled from the
training set as in Sect. 4.1. The number of training epochs is set to 200. Each
experiment is repeated over three random seeds.

Results. The results on ResNet-18 and ResNet-32 are shown in Table 4. We
can find that LETS-SAM performs the best in all the noise levels. Moreover,
LETS-ASAM outperforms ASAM by a large margin. Those results confirm that
LETS is an effective method to improve the robustness of SAM and ASAM.

4.6 Robustness to the Initialization of ρ

In this section, we conduct experiments on the CIFAR-10 and CIFAR-100
datasets using ResNet-18 to study the effect of the initialization of ρ (i.e., ρ0) to
the performance of LETS-ASAM. According to results shown in Table 5, we can
find that the performance of LETS-ASAM is not so sensitive to a wide range
of ρ0 ∈ {0.01, 0.05, 0.1, 0.5, 1, 1.5, 2}. Hence, ρ0 can be initialized more randomly
without compromising the performance of LETS-ASAM, which could imply that
learning the perturbation radius is more efficient and effective than using grid
search to find the perturbation radius.

4.7 Loss Landscapes

To illustrate the superior performance of the LETS method, we follow [9] to
visualize the loss landscapes w.r.t. weight perturbations of SAM, LETS-SAM,
ASAM, and LETS-ASAM. Figure 5 (resp. Figure 8 in Appendix D.4) shows the
corresponding loss landscapes for different methods built on ResNet-18 on the
CIFAR-10 (resp. CIFAR-100 ) dataset, respectively. We can find that the model
learned by LETS-SAM (resp. LETS-ASAM) has a flatter loss landscape than
that of SAM (resp. ASAM). Since the flatness is a measure for generalization,
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Table 4. Classification accuracy (%) on CIFAR-10 for ResNet-18 and ResNet-32
trained with different levels of label noises. The better result in each comparison group
is underlined and the best result across all the groups is in bold.

noise = 20% noise = 40% noise = 60% noise = 80%

R
es
N
et
-1
8

ERM 87.92± 0.02 70.82± 0.33 49.61± 0.39 28.23± 0.40

ESAM 94.19± 0.10 91.46± 0.49 81.30± 0.69 15.00± 4.89

RST 90.62± 0.37 77.84± 0.56 61.18± 0.87 47.32± 1.50

AE-SAM 92.84± 0.25 84.17± 0.53 73.54± 0.50 65.00± 2.25

LookSAM 92.72± 0.18 88.04± 0.40 72.26± 1.75 69.72± 1.52

AE-LookSAM 94.34± 0.29 91.58± 0.54 87.85± 0.23 76.90± 0.32

GSAM 91.72± 0.15 87.88± 0.50 83.29± 0.25 73.16± 1.65

SAM 94.80± 0.05 91.50± 0.22 88.15± 0.23 77.40± 0.21

LETS-SAM 95.65± 0.09 93.84± 0.19 89.48± 0.31 77.89± 0.80

ASAM 91.47± 0.21 88.28± 0.16 83.22± 0.38 71.77± 1.41

LETS-ASAM 92.77± 0.18 89.72± 0.20 84.94± 0.16 75.00± 0.56

R
es
N
et
-3
2

ERM 87.43± 0.00 70.82± 0.98 46.26± 0.18 29.00± 1.79

ESAM 93.42± 0.50 91.63± 0.29 82.73± 1.21 10.09± 0.10

RST 89.63± 0.26 74.17± 0.47 58.40± 2.95 59.53± 1.63

AE-SAM 92.87± 0.17 82.85± 2.16 71.50± 0.74 65.43± 3.19

LookSAM 92.49± 0.05 86.56± 0.92 63.35± 0.48 68.01± 5.37

AE-LookSAM 94.70± 0.10 91.80± 0.87 88.22± 0.27 77.03± 0.16

GSAM 92.07± 0.13 80.61± 0.45 84.08± 0.47 72.46± 1.85

SAM 95.08± 0.23 91.01± 0.41 88.90± 0.39 77.32± 0.12

LETS-SAM 95.73± 0.10 93.96± 0.05 89.71± 0.17 77.39± 0.19

ASAM 91.61± 0.26 88.83± 0.76 83.61± 0.33 72.32± 1.15

LETS-ASAM 92.80± 0.16 89.91± 0.41 85.29± 0.38 75.55± 1.06

those results could explain why using the proposed LETS method could lead to
performance improvement.
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4.8 Effects of Generalization Metrics

In this section, we conduct experiments on the CIFAR-10 and CIFAR-100
datasets using ResNet-18 to analyze the effects of different generalization met-
rics (in upper-level problem (2)), including validation loss, the generalization
gap, and its square. According to results shown in Table 6, we can find that
using 1

2

(
L(Dvl;θ⋆(ρ)) − L(Dtr;θ⋆(ρ))

)2 achieves the best performance on both
datasets, which suggests that it is a good objective for the upper-level problem.

Fig. 5. Loss landscapes of different methods built on ResNet-18 for CIFAR-10, where
x- and y-axes represent two orthogonal weight perturbations, while z-axis represents
the loss value.

Table 5. Classification accuracy (%) of LETS-ASAM on CIFAR-10 and CIFAR-100
for different initializations of ρ.

ρ0 CIFAR-10 CIFAR-100
0.01 96.79± 0.09 81.37± 0.18

0.05 96.73± 0.10 81.62± 0.14

0.1 96.78± 0.08 81.72± 0.07

0.5 96.74± 0.03 81.51± 0.14

1 96.77± 0.01 81.36± 0.21

1.5 96.79± 0.03 81.65± 0.06

2 96.79± 0.04 81.75± 0.15

4.9 Convergence

In this experiment, we study whether the proposed LETS-SAM can converge as
suggested in Theorem 4 of Appendix B. Figure 6 (resp. Figure 9 in Appendix D.5)
shows the change of the training loss w.r.t. number of epochs for the experiment
on CIFAR-100 (resp. CIFAR-10 ) in Sect. 4.1. We can find that LETS-SAM
and SAM exhibit comparable convergence speeds. Similarly, LETS-ASAM and
ASAM empirically enjoy similar convergence rates.
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Table 6. Classification accuracy (%) on CIFAR-10 and CIFAR-100 for different gen-
eralization metrics on LETS-SAM. The best is in bold.

CIFAR-10 CIFAR-100

L(Dvl; θ⋆(ρ)) 96.61± 0.07 80.54± 0.06

L(Dvl; θ⋆(ρ))−L(Dtr; θ⋆(ρ)) 96.75± 0.18 80.62± 0.15
1
2

(
L(Dvl; θ⋆(ρ))−L(Dtr; θ⋆(ρ))

)2
96.81± 0.02 80.71± 0.07

Fig. 6. Training loss w.r.t. training epochs on CIFAR-100. Best viewed in color.

5 Conclusion

In this paper, we study the problem of learning the perturbation radius in
sharpness-aware minimization. The proposed LETS method formulates it as
a bilevel optimization problem and proposes a gradient-based algorithm to
update the model parameters and the radius alternatively. Extensive experi-
ments demonstrate the effectiveness of the proposed LETS method across mul-
tiple tasks and various network architectures. The proposed LETS method is
general and can be combined with any SAM algorithm, as shown by the success
of LETS-ASAM.
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