MTMamba: Enhancing Multi-Task Dense Scene Understanding by Mamba-Based Decoders
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Background Two Types of Core Blocks Quantitative Results
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STM block b) CTM block
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* The self-task Mamba (STM) block is responsible for learning task-specific features. Ilts core module is the Mamba-
based feature extractor (MFE), where 1D SSM operation is extended on 2D images, namely SS2D. MFE learns
discriminant features and an input-dependent gate o (Linear(LN(z))) further refines the learned features.

« MTMamba achieves superior performance over CNN- and Transformer-based methods on both datasets.

* Previous works have shown that
Table 2: Effectiveness of the STM and CTM blocks on NYUDv2.

1. Enhancing cross-task correlation in the task-specific decoders is crucial to achieving better performance; | | | Vethod Each Decoder |Semseg Depth Normal Boundary A,,[%] #Param FLOPs

2. Modeling long-range spatial relationships plays an important role in Transformer-based methods to outper- * The IOFOIOC_DS_GC}' cross-task Mamba (CTM) l?lock contains 7"+ 1 MFE modules to ~e§<hchange information across T eto Stage mloUt RMSE| mErr]  odsFt A MB. GB|

form CNN-based methods. task-specific input features. One module is used to generate a global feature z°>" and the other 7" modules is . —

to obtain the task-specific feature zt. Each task-specific output feature is the aggregation of task-specific Slnglle-task 2 Sw!n 54.32 0.5166 19.21 77.30 0.00 | 888.77 1074.79

 Recently, Mamba has demon§trateq better cgpacity in long-range dependencies modeling and superior per- feature z! and global feature zS" weighted by a task-specific and input-dependent gate g?. Multi-task 2"Swin 93.7/2 0.5239 19.9/ 76.90 -1.87 1303.18  466.39
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* However, L 2*STM 54.66 0.4984 18.81 78.20 +1.84 | 276.48 435.47
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. Existing works on Mamba are limited to single-task learning scenarios, while using Mamba to solve multi- *o*STM+1*CTM | 55.82 05066 18.63 78.70 +238 307.99 54081

task problems is still unexplored;

2. Achieving cross-task correlation in Mamba remains under investigated, which is critical for multi-task
scene understanding.

* & vs. “Multi-task”: STM achieves better performance and is more efficient than the Swin Transformer block;

* % vs. &/B: Simply increasing the number of STM blocks from two to three fails to boost the performance.
However, when the CTM is used, MTMamba has a significantly better performance in terms of Ay ;
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Overall Architecture of MTMamba . % vs. “Single-task”: MTMamba significantly outperforms “Single-task” on all tasks.
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 We extend MTMamba to MTMamba++ by developing a new CTM block and achieve better performance.
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MTMamba++ Paper

« The pretrained encoder (Swin-Large Transformer is used here) extracts multi-scale generic visual representations
from the input RGB image;

Ours

* The decoder consists of three stages. Each stage contains task-specific STM blocks to capture the long-range
spatial relationship for each task and a shared CTM block to enhance each task’s feature by exchanging
knowledge across tasks. Note that the structures of STM and CTM blocks in the decoder are Mamba-based,;
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« Each task has its own prediction head to generate the final predictions.

* Visualization of predictions on the PASCAL-Context dataset. Our method generates better predictions with
more accurate details as marked in yellow circles.



