



香港科技大學 THE HONG KONG **UNIVERSITY OF SCIENCE** 

## Background

• Multi-task dense scene understanding aims to train a model for simultaneously handling multiple dense pre-



- Previous works have shown that
- 1. Enhancing cross-task correlation in the task-specific decoders is crucial to achieving better performance;
- 2. Modeling long-range spatial relationships plays an important role in Transformer-based methods to outperform CNN-based methods.
- Recently, Mamba has demonstrated better capacity in long-range dependencies modeling and superior performance than Transformers in various domains.
- However,
- 1. Existing works on Mamba are limited to single-task learning scenarios, while using Mamba to solve multitask problems is still unexplored;
- 2. Achieving cross-task correlation in Mamba remains under investigated, which is critical for multi-task scene understanding.



- The pretrained encoder (Swin-Large Transformer is used here) extracts multi-scale generic visual representations from the input RGB image;
- The decoder consists of three stages. Each stage contains task-specific STM blocks to capture the long-range spatial relationship for each task and a shared CTM block to enhance each task's feature by exchanging knowledge across tasks. Note that the structures of STM and CTM blocks in the decoder are Mamba-based;
- Each task has its own **prediction head** to generate the final predictions.

# MTMamba: Enhancing Multi-Task Dense Scene Understanding by Mamba-Based Decoders

Baijiong Lin<sup>1,4</sup> Weisen Jiang<sup>2,3</sup> Pengguang Chen<sup>5</sup> Yu Zhang<sup>3</sup> Shu Liu<sup>5</sup> Ying-Cong Chen<sup>1,2,4</sup> <sup>1</sup>HKUST(GZ) <sup>2</sup>HKUST <sup>3</sup>SUSTech <sup>4</sup>HKUST(GZ) - SmartMore Joint Lab <sup>5</sup>SmartMore

### Two Types of Core Blocks



- The self-task Mamba (STM) block is responsible for learning task-specific features. Its core module is the Mambadiscriminant features and an input-dependent gate  $\sigma(\text{Linear}(\text{LN}(z)))$  further refines the learned features.
- The proposed cross-task Mamba (CTM) block contains T + 1 MFE modules to exchange information across T feature  $\tilde{z}^t$  and global feature  $\tilde{z}^{sh}$  weighted by a task-specific and input-dependent gate  $g^t$ .

# **Qualitative Results**



generates more discriminative features.



more accurate details as marked in yellow circles.

based feature extractor (MFE), where 1D SSM operation is extended on 2D images, namely SS2D. MFE learns

task-specific input features. One module is used to generate a **global feature**  $\tilde{z}^{sh}$  and the other T modules is to obtain the task-specific feature  $\tilde{z}^t$ . Each task-specific output feature is the aggregation of task-specific

• Visualization of the final decoder feature of semantic segmentation. Compared with the baseline, our method

• Visualization of predictions on the PASCAL-Context dataset. Our method generates better predictions with

#### Table 1: Comparison wit

| Method                    | <b>Semseg</b><br>mIoU↑ | <b>Depth</b><br>RMSE↓ | <b>Normal</b><br>mErr↓ | <b>Boundary</b><br>odsF↑  | Method                  | <b>Semseg</b><br>mIoU↑ | <b>Parsing</b><br>mIoU↑ | <b>Saliency</b><br>maxF↑ | <b>Normal</b><br>mErr↓ | <b>Boundary</b><br>odsF↑ |
|---------------------------|------------------------|-----------------------|------------------------|---------------------------|-------------------------|------------------------|-------------------------|--------------------------|------------------------|--------------------------|
| CNN-based decoder         |                        |                       |                        |                           | CNN-based decoder       |                        |                         |                          |                        |                          |
| Cross-Stitch              | 36.34                  | 0.6290                | 20.88                  | 76.38                     | ASTMT                   | 68.00                  | 61.10                   | 65.70                    | 14.70                  | 72.40                    |
| PAP                       | 36.72                  | 0.6178                | 20.82                  | 76.42                     | PAD-Net                 | 53.60                  | 59.60                   | 65.80                    | 15.30                  | 72.50                    |
| PSD                       | 36.69                  | 0.6246                | 20.87                  | 76.42                     | MTI-Net                 | 61.70                  | 60.18                   | 84.78                    | 14.23                  | 70.80                    |
| PAD-Net                   | 36.61                  | 0.6270                | 20.85                  | 76.38                     | ATRC                    | 62.69                  | 59.42                   | 84.70                    | 14.20                  | 70.96                    |
| MTI-Net                   | 45.97                  | 0.5365                | 20.27                  | 77.86                     | ATRC-ASPP               | 63.60                  | 60.23                   | 83.91                    | 14.30                  | 70.86                    |
| ATRC                      | 46.33                  | 0.5363                | 20.18                  | 77.94                     | ATRC-BMTAS              | 67.67                  | 62.93                   | 82.29                    | 14.24                  | 72.42                    |
| Transformer-based decoder |                        |                       |                        | Transformer-based decoder |                         |                        |                         |                          |                        |                          |
| InvPT                     | 53.56                  | 0.5183                | <u>19.04</u>           | 78.10                     | InvPT                   | 79.03                  | <u>67.61</u>            | 84.81                    | <u>14.15</u>           | 73.00                    |
| MQTransformer             | <u>54.84</u>           | 0.5325                | 19.67                  | 78.20                     | MQTransformer           | 78.93                  | 67.41                   | 83.58                    | 14.21                  | 73.90                    |
| Mamba-based decoder       |                        |                       |                        | Mamba-based decoder       |                         |                        |                         |                          |                        |                          |
| MTMamba (ours)            | 55.82                  | 0.5066                | 18.63                  | 78.70                     | MTMamba ( <b>ours</b> ) | 81.11                  | 72.62                   | 84.14                    | 14.14                  | 78.80                    |

| Table 2: Effectiveness of the STM and CTM blocks on NYUDv2. |                                                                                  |                                         |                                             |                                         |                                         |                                         |                                      |                                      |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|--|
| Method                                                      | Each Decoder<br>Stage                                                            | <b>Semseg</b><br>mIoU↑                  | <b>Depth</b><br>RMSE↓                       | <b>Normal</b><br>mErr↓                  | <b>Boundary</b><br>odsF↑                | $\Delta_m$ [%] $\uparrow$               | <b>#Param</b><br>MB↓                 | <b>FLOPs</b><br>GB↓                  |  |
| Single-task<br>Multi-task                                   | 2*Swin<br>2*Swin                                                                 | 54.32<br>53.72                          | 0.5166<br>0.5239                            | 19.21<br>19.97                          | 77.30<br>76.50                          | 0.00<br>-1.87                           | 888.77<br>303.18                     | 1074.79<br>466.35                    |  |
| MTMamba                                                     | <ul> <li>↓1*STM</li> <li>↓2*STM</li> <li>■3*STM</li> <li>★2*STM+1*CTM</li> </ul> | 54.61<br>54.66<br>54.75<br><b>55.82</b> | 0.5059<br><b>0.4984</b><br>0.5054<br>0.5066 | 19.00<br>18.81<br>18.81<br><b>18.63</b> | 77.40<br>78.20<br>78.20<br><b>78.70</b> | +0.95<br>+1.84<br>+1.55<br><b>+2.38</b> | 252.51<br>276.48<br>300.45<br>307.99 | 354.13<br>435.47<br>516.82<br>540.81 |  |

- tions;







### **Quantitative Results**

| th | state-of-the-art methods or | NYUDv2 | (left) a | and PASCAL- | Context ( | right) | datasets. |
|----|-----------------------------|--------|----------|-------------|-----------|--------|-----------|

• MTMamba achieves superior performance over CNN- and Transformer-based methods on both datasets.

•  $\blacklozenge$  vs. "Multi-task": STM achieves better performance and is more efficient than the Swin Transformer block;

•  $\star$  vs.  $\phi/\blacksquare$ : Simply increasing the number of STM blocks from two to three fails to boost the performance. However, when the CTM is used, MTMamba has a significantly better performance in terms of  $\Delta_m$ ;

• 🛧 vs. "Single-task": MTMamba significantly outperforms "Single-task" on all tasks.

#### Summary

• We propose MTMamba, a novel multi-task architecture with a Mamba-based decoder for multi-task dense scene understanding, which can effectively model long-range dependency and achieve cross-task interaction;

• We design a novel CTM block to enhance information exchange across tasks in multi-task dense prediction;

• Experiments on two benchmark datasets demonstrate the superiority of MTMamba on multi-task dense prediction over previous CNN-based and Transformer-based methods;

Qualitative evaluations show that MTMamba captures discriminative features and generates precise predic-

• We extend MTMamba to MTMamba++ by developing a new CTM block and achieve better performance.





