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Background

• Multi-task dense scene understanding aims to train a model for simultaneously handling multiple dense pre-
diction tasks, whose architecture is widely based on the encoder-decoder framework.
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• Previous works have shown that

1. Enhancing cross-task correlation in the task-specific decoders is crucial to achieving better performance;

2. Modeling long-range spatial relationships plays an important role in Transformer-based methods to outper-
form CNN-based methods.

• Recently, Mamba has demonstrated better capacity in long-range dependencies modeling and superior per-
formance than Transformers in various domains.

• However,

1. Existing works on Mamba are limited to single-task learning scenarios, while using Mamba to solve multi-
task problems is still unexplored;

2. Achieving cross-task correlation in Mamba remains under investigated, which is critical for multi-task
scene understanding.

Overall Architecture of MTMamba
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Mamba-based decoder

pretrained encoderInput Image

• The pretrained encoder (Swin-Large Transformer is used here) extracts multi-scale generic visual representations
from the input RGB image;

• The decoder consists of three stages. Each stage contains task-specific STM blocks to capture the long-range
spatial relationship for each task and a shared CTM block to enhance each task’s feature by exchanging
knowledge across tasks. Note that the structures of STM and CTM blocks in the decoder are Mamba-based;

• Each task has its own prediction head to generate the final predictions.

Two Types of Core Blocks
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• The self-task Mamba (STM) block is responsible for learning task-specific features. Its core module is the Mamba-
based feature extractor (MFE), where 1D SSM operation is extended on 2D images, namely SS2D. MFE learns
discriminant features and an input-dependent gate σ(Linear(LN(z))) further refines the learned features.

• The proposed cross-task Mamba (CTM) block contains T + 1 MFE modules to exchange information across T
task-specific input features. One module is used to generate a global feature z̃sh and the other T modules is
to obtain the task-specific feature z̃t. Each task-specific output feature is the aggregation of task-specific
feature z̃t and global feature z̃sh weighted by a task-specific and input-dependent gate gt.

Qualitative Results
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• Visualization of the final decoder feature of semantic segmentation. Compared with the baseline, our method
generates more discriminative features.

Input Image Semseg Parsing Saliency Normal Boundary

In
vP

T
O

ur
s

G
T

• Visualization of predictions on the PASCAL-Context dataset. Our method generates better predictions with
more accurate details as marked in yellow circles.

Quantitative Results

Table 1: Comparison with state-of-the-art methods on NYUDv2 (left) and PASCAL-Context (right) datasets.

Method
Semseg Depth Normal Boundary
mIoU↑ RMSE↓ mErr↓ odsF↑

CNN-based decoder
Cross-Stitch 36.34 0.6290 20.88 76.38
PAP 36.72 0.6178 20.82 76.42
PSD 36.69 0.6246 20.87 76.42
PAD-Net 36.61 0.6270 20.85 76.38
MTI-Net 45.97 0.5365 20.27 77.86
ATRC 46.33 0.5363 20.18 77.94

Transformer-based decoder
InvPT 53.56 0.5183 19.04 78.10
MQTransformer 54.84 0.5325 19.67 78.20

Mamba-based decoder
MTMamba (ours) 55.82 0.5066 18.63 78.70

Method
Semseg Parsing Saliency Normal Boundary
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

CNN-based decoder
ASTMT 68.00 61.10 65.70 14.70 72.40
PAD-Net 53.60 59.60 65.80 15.30 72.50
MTI-Net 61.70 60.18 84.78 14.23 70.80
ATRC 62.69 59.42 84.70 14.20 70.96
ATRC-ASPP 63.60 60.23 83.91 14.30 70.86
ATRC-BMTAS 67.67 62.93 82.29 14.24 72.42

Transformer-based decoder
InvPT 79.03 67.61 84.81 14.15 73.00
MQTransformer 78.93 67.41 83.58 14.21 73.90

Mamba-based decoder
MTMamba (ours) 81.11 72.62 84.14 14.14 78.80

• MTMamba achieves superior performance over CNN- and Transformer-based methods on both datasets.

Table 2: Effectiveness of the STM and CTM blocks on NYUDv2.

Method
Each Decoder Semseg Depth Normal Boundary ∆m[%] #Param FLOPs

Stage mIoU↑ RMSE↓ mErr↓ odsF↑ ↑ MB↓ GB↓
Single-task 2*Swin 54.32 0.5166 19.21 77.30 0.00 888.77 1074.79
Multi-task 2*Swin 53.72 0.5239 19.97 76.50 -1.87 303.18 466.35

MTMamba

♦1*STM 54.61 0.5059 19.00 77.40 +0.95 252.51 354.13
♠2*STM 54.66 0.4984 18.81 78.20 +1.84 276.48 435.47
■3*STM 54.75 0.5054 18.81 78.20 +1.55 300.45 516.82

⋆2*STM+1*CTM 55.82 0.5066 18.63 78.70 +2.38 307.99 540.81

• ♠ vs. “Multi-task”: STM achieves better performance and is more efficient than the Swin Transformer block;

• ⋆ vs. ♠/■: Simply increasing the number of STM blocks from two to three fails to boost the performance.
However, when the CTM is used, MTMamba has a significantly better performance in terms of ∆m;

• ⋆ vs. “Single-task”: MTMamba significantly outperforms “Single-task” on all tasks.

Summary

• We propose MTMamba, a novel multi-task architecture with a Mamba-based decoder for multi-task dense scene
understanding, which can effectively model long-range dependency and achieve cross-task interaction;

• We design a novel CTM block to enhance information exchange across tasks in multi-task dense prediction;

• Experiments on two benchmark datasets demonstrate the superiority of MTMamba on multi-task dense predic-
tion over previous CNN-based and Transformer-based methods;

• Qualitative evaluations show that MTMamba captures discriminative features and generates precise predic-
tions;

• We extend MTMamba to MTMamba++ by developing a new CTM block and achieve better performance.


