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Abstract. Multi-task dense scene understanding, which learns a model
for multiple dense prediction tasks, has a wide range of application sce-
narios. Modeling long-range dependency and enhancing cross-task inter-
actions are crucial to multi-task dense prediction. In this paper, we pro-
pose MTMamba, a novel Mamba-based architecture for multi-task scene
understanding. It contains two types of core blocks: self-task Mamba
(STM) block and cross-task Mamba (CTM) block. STM handles long-
range dependency by leveraging Mamba, while CTM explicitly mod-
els task interactions to facilitate information exchange across tasks. Ex-
periments on NYUDv2 and PASCAL-Context datasets demonstrate the
superior performance of MTMamba over Transformer-based and CNN-
based methods. Notably, on the PASCAL-Context dataset, MTMamba
achieves improvements of +2.08, +5.01, and +4.90 over the previous
best methods in the tasks of semantic segmentation, human parsing,
and object boundary detection, respectively. The code is available at
https://github.com/EnVision-Research/MTMamba.
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1 Introduction

Multi-task dense scene understanding is an essential problem in computer vi-
sion [36] and has a variety of practical applications, such as autonomous driv-
ing [20,23], healthcare [19], and robotics [49]. It aims to train a model for simulta-
neously handling multiple dense prediction tasks, such as semantic segmentation,
monocular depth estimation, and surface normal estimation.

The prevalent multi-task architecture follows an encoder-decoder framework,
consisting of a task-shared encoder for feature extraction and task-specific de-
coders for predictions [36]. This framework is very general and many variants
⋆ Corresponding authors.
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have been proposed [37,42,43,47] to improve its performance in multi-task scene
understanding. One promising approach is the decoder-focused method [36] with
the aim of enhancing cross-task interaction in task-specific decoders through
well-designed fusion modules. For example, derived from the convolutional neu-
ral network (CNN), PAD-Net [42] and MTI-Net [37] incorporate a multi-modal
distillation module to promote information fusion between different tasks in
the decoder and achieve better performance than the encoder-decoder frame-
work. Since the convolution operation mainly focuses on local features [2], recent
methods [43, 47] propose Transformer-based decoders with attention-based fu-
sion modules. These methods leverage the attention mechanism to capture global
context information, resulting in better performance than CNN-based methods.
Previous works demonstrate that enhancing cross-task correlation and modeling
long-range spatial relationships are critical for multi-task dense prediction.

Very recently, Mamba [13], a new architecture derived from state space mod-
els (SSMs) [14,15], has shown better long-range dependencies modeling capacity
and superior performance than Transformer models in various domains, includ-
ing language modeling [12, 13, 39], graph reasoning [1, 38], medical images anal-
ysis [30, 41], and point cloud analysis [22, 50]. However, all of these works focus
on single-task learning, while how to adopt Mamba for multi-task training is
still under investigation. Moreover, achieving cross-task correlation in Mamba
remains unexplored, which is critical for multi-task scene understanding.

To fill these gaps, in this paper, we propose MTMamba, a novel multi-
task architecture featuring a Mamba-based decoder and superior performance
in multi-task scene understanding. The overall framework is shown in Figure 1.
MTMamba is a decoder-focused method with two types of core blocks: the self-
task Mamba (STM) block and the cross-task Mamba (CTM) block, illustrated
in Figure 2. Specifically, STM, inspired by Mamba, can effectively capture global
context information. CTM is designed to enhance each task’s features by facili-
tating knowledge exchange across different tasks. Therefore, through the collab-
oration of STM and CTM blocks in the decoder, MTMamba not only enhances
cross-task interaction but also effectively handles long-range dependency.

We evaluate MTMamba on two standard multi-task dense prediction bench-
mark datasets, namely NYUDv2 [35] and PASCAL-Context [6]. Quantitative
results demonstrate that MTMamba largely outperforms both CNN-based and
Transformer-based methods. Notably, on the PASCAL-Context dataset, MT-
Mamba outperforms the previous best by +2.08, +5.01, and +4.90 in semantic
segmentation, human parsing, and object boundary detection tasks, respectively.
Qualitative studies show that MTMamba generates better visual results with
more accurate details than state-of-the-art Transformer-based methods.

Our main contributions are summarized as follows:

– We propose MTMamba, a novel multi-task architecture for multi-task scene
understanding. It contains a novel Mamba-based decoder, which effectively
models long-range spatial relationships and achieves cross-task correlation;

– We design a novel CTM block to enhance cross-task interaction in multi-task
dense prediction;
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– Experiments on two benchmark datasets demonstrate the superiority of
MTMamba on multi-task dense prediction over previous CNN-based and
Transformer-based methods;

– Qualitative evaluations show that MTMamba captures discriminative fea-
tures and generates precise predictions.

2 Related Works

2.1 Multi-Task Learning

Multi-task learning (MTL) is a learning paradigm that aims to simultaneously
learn multiple tasks in a single model [51]. Recent MTL research mainly focuses
on multi-objective optimization [24–26, 34, 44–46, 48] and network architecture
design [37, 42, 43, 47]. In multi-task dense scene understanding, most existing
works focus on designing architecture [36], especially designing specific modules
in the decoder to achieve better cross-task interaction. For example, based on
CNN, Xu et al. [42] introduce PAD-Net, incorporating an effective multi-modal
distillation module to promote information fusion between different tasks in the
decoder. MTI-Net [37] is a complex multi-scale and multi-task CNN architecture
with an information distillation across various feature scales. As the convolution
operation mainly captures local features [2], recent approaches [43,47] utilize the
attention mechanism to grasp global context and develop Transformer-based de-
coders for multi-task scene understanding. For instance, Ye & Xu [47] introduce
InvPT, a Transformer-based multi-task architecture, employing an effective UP-
Transformer block for multi-task feature interaction at different feature scales.
MQTransformer [43] designs a cross-task query attention module to enable ef-
fective task association and information exchange in the decoder.

Previous works demonstrate long-range dependency modeling and enhancing
cross-task correlation are critical for multi-task dense prediction. Unlike existing
methods, we propose a novel multi-task architecture derived from Mamba to
capture global information better and promote cross-task interaction.

2.2 State Space Models

State space models (SSMs) are a mathematical representation of dynamic sys-
tems, which models the input-output relationship through a hidden state. SSMs
are general and have achieved great success in a wide variety of applications such
as reinforcement learning [16], computational neuroscience [10], and linear dy-
namical systems [18]. Recently, SSMs are introduced as an alternative network
architecture to model long-range dependency. Compared with CNN-based net-
works [17,21], which are designed for capturing local dependence, SSMs are more
powerful for long sequences; Compared with Transformer-based networks [8,40],
which require the quadratic complexity of the sequence length, SSMs are more
computation- and memory-efficient.

Many different structures have been proposed recently to improve the ex-
pressivity and efficiency of SSMs. Gu et al. [14] propose structured state space
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Fig. 1: Overview of the proposed MTMamba for multi-task dense scene understanding,
illustrating with semantic segmentation (abbreviated as “Semseg”) and depth estima-
tion (abbreviated as “Depth”) tasks. The red blocks are shared across all tasks, while
the blue and green ones are task-specific. The pretrained encoder (Swin-Large Trans-
former is used) extracts multi-scale generic visual representations from the input RGB
image. In the decoder, all task representations from task-specific STM blocks are fused
and refined in the CTM block. Each task has its own head to generate the final pre-
dictions. Note that the structures of STM and CTM blocks (details in Figure 2) in the
decoder are Mamba-based (i.e., non-attention).

models (S4) to improve computational efficiency, where the state matrix is a sum
of low-rank and normal matrices. Many follow-up works attempt to enhance the
effectiveness of S4. For example, Fu et al. [11] design a new SSM layer H3 to
fill the performance gap between SSMs and Transformers in language modeling.
Mehta et al. [32] introduce a gated state space layer using gated units for improv-
ing expressivity. Recently, Gu & Dao [13] further propose Mamba with the core
operation S6, an input-dependent selection mechanism of S4, which achieves
linear scaling in sequence length and demonstrates superior performance over
Transformers on various benchmarks. Mamba has been successfully applied in
image classification [27,54], image segmentation [41], and graph prediction [38].
Different from them, which use Mamba in the single-task setting, we consider a
more challenging multi-task setting and propose novel self-task and cross-task
Mamba modules to capture intra-task and inter-task dependence.

3 Methodology

In this section, we first introduce the background knowledge of state space mod-
els and Mamba in Section 3.1. Then, we introduce the overall architecture of
the proposed MTMamba in Section 3.2. Subsequently, we delve into a detailed
exploration of each part in MTMamba, including the encoder in Section 3.3, the
Mamba-based decoder in Section 3.4, and the output head in Section 3.5.

3.1 Preliminaries

SSMs [13–15], originated from the linear systems theory [5, 18], map input se-
quence x(t) ∈ R to output sequence y(t) ∈ R though a hidden state h ∈ RN by
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a linear ordinary differential equation:

h′(t) = Ah(t) +Bx(t), (1)

y(t) = C⊤h(t) +Dx(t), (2)

where A ∈ RN×N is the state matrix, B ∈ RN is the input matrix, C ∈ RN is
the output matrix, and D ∈ R is the skip connection. Equation (1) defines the
evolution of the hidden state h(t), while Equation (2) determines the output is
composed of a linear transformation of the hidden state h(t) and a skip connec-
tion from x(t). For the remainder of this paper, D is omitted for explanation
(i.e., D = 0).

Since the continuous-time system is not suitable for digital computers and
real-world data, which are usually discrete, a discretization procedure is intro-
duced to approximate it by a discrete-time one. Let ∆ ∈ R be a discrete-time
step. Equations (1) and (2) are discretized as

ht = Āht−1 + B̄xt, (3)

yt = C̄⊤ht, (4)

where xt = x(∆t), and

Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I) ·∆B ≈ ∆B, C̄ = C. (5)

In S4 [14], (A,B,C, ∆) are trainable parameters learned by gradient descent
and do not explicitly depend on the input sequence, resulting in weak contextual
information extraction. To overcome this, Mamba [13] proposes S6, which in-
troduces an input-dependent selection mechanism to allow the system to select
relevant information based on the input sequence. This is achieved by making B,
C, and ∆ as functions of the input xt. More formally, given an input sequence
x ∈ RB×L×C where B is the batch size, L is the sequence length, and C is the
feature dimension, the input-dependent parameters (B,C, ∆) are computed as

B = Linear(x) ∈ RB×L×N , (6)

C = Linear(x) ∈ RB×L×N , (7)

∆ = SoftPlus(∆̃+ Linear(x)) ∈ RB×L×C , (8)

where ∆̃ ∈ RB×L×C is a learnable parameter, SoftPlus(·) is the SoftPlus func-
tion, and Linear(·) is the linear layer. A ∈ RL×C is a trainable parameter as
in S4. After computing (A,B,C, ∆), (A,B,C) are discretized via Equation (5),
then the output sequence y ∈ RB×L×C is computed by Equations (3) and (4).

3.2 Overall Architecture

An overview of MTMamba is illustrated in Figure 1. It contains three compo-
nents: an off-the-shelf encoder, a Mamba-based decoder, and task-specific heads.
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Specifically, the encoder is shared across all tasks and responsible for extract-
ing multi-scale generic visual representations from the input image. The decoder
consists of three stages. Each stage contains task-specific STM blocks to capture
the long-range spatial relationship for each task and a shared CTM block to en-
hance each task’s feature by exchanging knowledge across tasks. In the end, an
output head is used to generate the final prediction for each task. We introduce
the details of each part as follows.

3.3 Encoder

We take the Swin Transformer [28] as an example. Consider an input RGB
image x ∈ R3×H×W , where H and W are the height and width of the image,
respectively. The encoder employs a patch-partition module to segment the input
image into non-overlapping patches. Each patch is regarded as a token, and
its feature representation is a concatenation of the raw RGB pixel values. In
our experiment, we use a standard patch size of 4 × 4. Therefore, the feature
dimension of each patch is 4 × 4 × 3 = 48. After patch splitting, a linear layer
is applied to project the raw token into a C-dimensional feature embedding.
The patch tokens, after being transformed, sequentially traverse multiple Swin
Transformer blocks and patch merging layers, which collaboratively produce
hierarchical feature representations. Specifically, the patch merging layer [28] is
used to 2× downsample the spatial dimensions (i.e., H and W ) and 2× expand
the feature dimension (i.e., C), while the Swin Transformer block focuses on
learning and refining the feature representations. Formally, after forward passing
the encoder, we obtain the output from four stages:

f1, f2, f3, f4 = encoder(x), (9)

where f1, f2, f3, and f4 have a size of C × H
4 × W

4 , 2C × H
8 × W

8 , 4C × H
16 × W

16 ,
and 8C × H

32 × W
32 , respectively.

3.4 Mamba-based Decoder

Extend SSMs to 2D images. Different from 1D language sequences, 2D spatial
information is crucial in vision tasks. Therefore, SSMs introduced in Section
3.1 cannot be directly applied in 2D images. Inspired by [27], we incorporate
the 2D-selective-scan (SS2D) operation to address this problem. This method
involves expanding image patches along four directions, generating four unique
feature sequences. Then, each feature sequence is fed to an SSM (such as S6).
Finally, the processed features are combined to construct the comprehensive 2D
feature map. Formally, given the input feature z, the output feature z̄ of SS2D
is computed as

zv = expand(z, v), for v ∈ {1, 2, 3, 4}, (10)
z̄v = S6(zv), for v ∈ {1, 2, 3, 4}, (11)
z̄ = sum(z̄1, z̄2, z̄3, z̄4), (12)



MTMamba 7

Linear

Conv

SS2D

LN

LN

MFE

Linear

LN

Linear

MFE MFE MFE

LN LN

Linear

Linear Linear Linear

LN

(a) STM block (b) CTM block

Fig. 2: (a) Illustration of the self-task Mamba (STM) block. Its core module is the
Mamba-based feature extractor (MFE), where 1D S6 operation (introduced in Section
3.1) is extended on 2D images, namely SS2D. MFE is responsible for learning discrimi-
nant features and an input-dependent gate σ(Linear(LN(z))) further refines the learned
features. (b) Overview of the cross-task Mamba (CTM) block, illustrating with two
tasks. Suppose T is the number of tasks (T = 2 in this illustration). The CTM block
inputs T features, outputs T features, and contains T + 1 MFE modules. One is used
to generate a global feature z̃sh and the other is to obtain the task-specific feature z̃t.
Each output feature is the aggregation of task-specific feature z̃t and global feature z̃sh

weighted by a task-specific gate gt. More details about these two blocks are provided
in Section 3.4.

where v ∈ {1, 2, 3, 4} is the four different scanning directions, expand(z, v) is to
expand 2D feature map z along direction v, S6(·) is the S6 operation introduced
in Section 3.1, and sum(·) is the element-wise add operation.

Mamba-based Feature Extractor (MFE). We introduce a Mamba-based feature
extractor to learn the representation of 2D images. It is a critical module in the
proposed Mamba-based decoder. As shown in Figure 2(a), motivated by [13],
MFE consists of a linear layer used to expand the feature dimension by a con-
trollable expansion factor α, a convolution layer with an activation function
for extracting local features, an SS2D operation for modeling long-range de-
pendency, and a layer normalization to normalize the learned features. More
formally, given the input feature z, the output z̄ of MFE is calculated as

z̄ = (LN ◦ SS2D ◦ σ ◦ Conv ◦ Linear)(z), (13)

where LN(·) is the layer normalization, σ(·) is the activation function and the
SiLU function is used in our experiment, Conv(·) is the convolution operation.

Self-Task Mamba (STM) Block. We introduce a self-task Mamba block for learn-
ing task-specific features based on MFE, which is illustrated in Figure 2(a).
Inspired by [13], we use an input-dependent gate to adaptively select useful rep-
resentations learned from MFE. After that, a linear layer is used to reduce the
feature dimension expanded in MFE. Specifically, given the input feature z, the
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computation in the STM block is as

zLN = LN(z), (14)
z̃ = MFE(zLN), (15)
g = σ(Linear(zLN)), (16)
z̄ = z̃ ⋆ g, (17)
z̄ = z+ Linear(z̄), (18)

where ⋆ is the element-wise multiplication.

Cross-Task Mamba (CTM) Block. Although the STM block can effectively learn
representations for each individual task, it lacks inter-task connections to share
information which is crucial to the performance of MTL. To tackle this prob-
lem, we design a novel cross-task Mamba block (as shown in Figure 2(b)) by
modifying the STM block to achieve knowledge exchange across different tasks.
Specifically, given all tasks’ features {zt}Tt=1 where T is the number of tasks, we
first concatenate all task features and then pass it through an MFE to learn a
global representation z̃sh. Each task also learns its corresponding feature z̃t via its
own MFE. Then, we use an input-dependent gate to aggregate the task-specific
representation z̃t and global representation z̃sh. Thus, each task adaptively fuses
the global representation and its features. Formally, the forward process in the
CTM block is as

ztLN = LN(zt), for t ∈ {1, 2, · · · , T}, (19)

zsh
LN = LN(concat(z1, z2, · · · , zT )), (20)

z̃t = MFE(ztLN), for t ∈ {1, 2, · · · , T}, (21)

z̃sh = MFE(zsh
LN), (22)

gt = σ̂(Linear(ztLN)), for t ∈ {1, 2, · · · , T}, (23)

z̄t = gt ⋆ z̃t + (1− gt) ⋆ z̃sh, for t ∈ {1, 2, · · · , T}, (24)

z̄t = zt + Linear(z̄t), for t ∈ {1, 2, · · · , T}, (25)

where concat(·) is the concatenation operation, σ̂(·) is the activation function
and instead of SiLU used in STM block, we use the sigmoid function which is
more suitable for generating the gating factors gt used in Equation (24).

Stage Design. As shown in Figure 1, the Mamba-based decoder contains three
stages. Each stage has a similar design and comprises patch expand layers, STM
blocks, and a CTM block. The patch expand layer is used to 2× upsample
the feature resolution and 2× reduce the feature dimension. For each task, its
feature will be expanded by a patch expand layer and then fused with multi-scale
features from the encoder via skip connections to complement the loss of spatial
information caused by down-sampling. Then, a linear layer is used to reduce the
feature dimension and two STM blocks are responsible for learning task-specific
representation. Finally, a CTM block is applied to enhance each task’s feature
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by knowledge exchange across tasks. Except for the CTM block, other modules
are task-specific. More formally, the forward process of i-stage (i = 1, 2, 3) is
formulated as

rti = PatchExpand(zti−1) for t ∈ {1, 2, · · · , T}, (26)

rti = Linear(concat(rti, f4−i)), for t ∈ {1, 2, · · · , T}, (27)

rti = STM(STM(rti)), for t ∈ {1, 2, · · · , T}, (28)

{zti}Tt=1 = CTM({rti}Tt=1), (29)

where zt0 = f4, PatchExpand(·) is the patch expand layer, STM(·) and CTM(·) are
STM and CTM blocks, respectively.

3.5 Output Head

After obtaining each task’s feature from the decoder, each task has its own output
head to generate its final prediction. Inspired by [4], each output head contains
a patch expand layer and a linear layer, which is lightweight. Specifically, given
the t-th task feature zt with the size of C × H

4 × W
4 from the decoder, the patch

expand layer performs 4× up-sampling to restore the resolution of the feature
maps to the input resolution H ×W , and then the linear layer is used to output
the final pixel-wise prediction.

4 Experiments

In this section, we conduct extensive experiments to demonstrate the effective-
ness of the proposed MTMamba in multi-task dense scene understanding.

4.1 Experimental Setups

Datasets. Following [43,47], experiments are conducted on two benchmark datasets
with multi-task labels: NYUDv2 [35] and PASCAL-Context [6]. The NYUDv2
dataset comprises a variety of indoor scenes, containing 795 and 654 RGB im-
ages for training and testing, respectively. It consists of four tasks: 40-class se-
mantic segmentation (Semseg), monocular depth estimation (Depth), surface
normal estimation (Normal), and object boundary detection (Boundary). The
PASCAL-Context dataset, derived from the PASCAL dataset [9], includes both
indoor and outdoor scenes and provides pixel-wise labels for tasks like semantic
segmentation, human parsing (Parsing), and object boundary detection, with
additional labels for surface normal estimation and saliency detection tasks gen-
erated by [31]. It contains 4,998 training images and 5,105 testing images.

Implementation Details. We use Swin-Large Transformer [28] pretrained on the
ImageNet-22K dataset [7] as the encoder. All models are trained with a batch
size of 8 for 50,000 iterations. The AdamW optimizer [29] is adopted with a
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Table 1: Comparison with state-of-the-art methods on NYUDv2 (left) and PASCAL-
Context (right) datasets. ↑ (↓) indicates that a higher (lower) result corresponds to
better performance. The best and second best results are highlighted in bold and
underline, respectively.

Method Semseg Depth Normal Boundary
mIoU↑ RMSE↓ mErr↓ odsF↑

CNN-based decoder
Cross-Stitch [33] 36.34 0.6290 20.88 76.38
PAP [52] 36.72 0.6178 20.82 76.42
PSD [53] 36.69 0.6246 20.87 76.42
PAD-Net [42] 36.61 0.6270 20.85 76.38
MTI-Net [37] 45.97 0.5365 20.27 77.86
ATRC [3] 46.33 0.5363 20.18 77.94

Transformer-based decoder
InvPT [47] 53.56 0.5183 19.04 78.10
MQTransformer [43] 54.84 0.5325 19.67 78.20

Mamba-based decoder
MTMamba (ours) 55.82 0.5066 18.63 78.70

Method Semseg Parsing Saliency Normal Boundary
mIoU↑ mIoU↑ maxF↑ mErr↓ odsF↑

CNN-based decoder
ASTMT [31] 68.00 61.10 65.70 14.70 72.40
PAD-Net [42] 53.60 59.60 65.80 15.30 72.50
MTI-Net [37] 61.70 60.18 84.78 14.23 70.80
ATRC [3] 62.69 59.42 84.70 14.20 70.96
ATRC-ASPP [3] 63.60 60.23 83.91 14.30 70.86
ATRC-BMTAS [3] 67.67 62.93 82.29 14.24 72.42

Transformer-based decoder
InvPT [47] 79.03 67.61 84.81 14.15 73.00
MQTransformer [43] 78.93 67.41 83.58 14.21 73.90

Mamba-based decoder
MTMamba (ours) 81.11 72.62 84.14 14.14 78.80

learning rate of 10−4 and a weight decay of 10−5. The polynomial learning rate
scheduler is used in the training process. The expansion factor α in MFE is set to
2. Following [47], we resize the input images of NYUDv2 and PASCAL-Context
as 448 × 576 and 512 × 512, respectively, and use the same data augmentation
including random color jittering, random cropping, random scaling, and ran-
dom horizontal flipping. We use ℓ1 loss for depth estimation and surface normal
estimation tasks and the cross-entropy loss for other tasks.

Evaluation Metrics. Following [47], we use mean intersection over union (mIoU)
for semantic segmentation and human parsing tasks, root mean square error
(RMSE) for monocular depth estimation task, mean error (mErr) for surface
normal estimation task, maximal F-measure (maxF) for saliency detection task,
and optimal-dataset-scale F-measure (odsF) for object boundary detection task.
Besides, we use the average relative MTL performance ∆m (defined in [36]) as
the overall performance metric.

4.2 Comparison with State-of-the-art Methods

We compare the proposed MTMamba method with two types of MTL methods:
CNN-based methods, including Cross-Stitch [33], PAP [52], PSD [53], PAD-
Net [42], MTI-Net [37], ATRC [3], and ASTMT [31], and Transformer-based
methods, i.e., InvPT [47] and MQTransformer [43].

Table 1 shows the results on NYUDv2 and PASCAL-Context datasets. As can
be seen, MTMamba shows superior performance in all four tasks on NYUDv2.
For example, the performance of the semantic segmentation task has notably im-
proved from the Transformer-based methods (i.e., InvPT and MQTransformer),
increasing by +2.26 and +0.98, respectively, which demonstrates the effective-
ness of MTMamba. The results on PASCAL-Context show the clear superior-
ity of MTMamba. Especially, MTMamba significantly improves the previous
best by +2.08, +5.01, and +4.90 in semantic segmentation, human parsing,
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Table 2: Effectiveness of the STM and CTM blocks on NYUDv2. Swin-Large encoder
is used in this experiment. “Multi-task” denotes an MTL model where each task only
uses two standard Swin Transformer blocks in each decoder stage. “Single-task” is
the single-task counterpart of “Multi-task”. ♦, ♠, ■, and ⋆ are different variants of
MTMamba. ⋆ is the default configuration of MTMamba. ↑ (↓) indicates that a higher
(lower) result corresponds to better performance.

Method Each Decoder Semseg Depth Normal Boundary ∆m[%] #Param FLOPs
Stage mIoU↑ RMSE↓ mErr↓ odsF↑ ↑ MB↓ GB↓

Single-task 2*Swin 54.32 0.5166 19.21 77.30 0.00 888.77 1074.79
Multi-task 2*Swin 53.72 0.5239 19.97 76.50 -1.87 303.18 466.35

MTMamba

♦1*STM 54.61 0.5059 19.00 77.40 +0.95 252.51 354.13
♠2*STM 54.66 0.4984 18.81 78.20 +1.84 276.48 435.47
■3*STM 54.75 0.5054 18.81 78.20 +1.55 300.45 516.82

⋆2*STM+1*CTM 55.82 0.5066 18.63 78.70 +2.38 307.99 540.81

Table 3: Effectiveness of MFE module in MTMamba on NYUDv2. Swin-Large en-
coder is used. “W-MSA” is the window-based multi-head self-attention module in Swin
Transformer [28]. “MFE” denotes all MFE modules in both STM and CTM blocks.

Semseg Depth Normal Boundary ∆m[%] #Param FLOPs
mIoU↑ RMSE↓ mErr↓ odsF↑ ↑ MB↓ GB↓

MFE→W-MSA 54.57 0.5109 19.95 76.60 -0.79 451.81 884.61
MTMamba 55.82 0.5066 18.63 78.70 +2.38 307.99 540.81

Table 4: Effectiveness of linear gate in MTMamba on NYUDv2. Swin-Large encoder is
used. “W-MSA” is the window-based multi-head self-attention module in Swin Trans-
former [28]. “Linear” denotes all linear gates in both STM and CTM blocks.

Semseg Depth Normal Boundary ∆m[%] #Param FLOPs
mIoU↑ RMSE↓ mErr↓ odsF↑ ↑ MB↓ GB↓

Linear→W-MSA 55.01 0.4990 18.73 78.20 +2.08 345.33 659.29
MTMamba 55.82 0.5066 18.63 78.70 +2.38 307.99 540.81

and object boundary detection tasks, respectively, showing the effectiveness of
MTMamba again. The qualitative comparison with InvPT on NYUDv2 and
PASCAL-Context is shown in Figures 4 and 5, showing that MTMmaba pro-
vides more precise predictions and details.

4.3 Model Analysis

Effectiveness of STM and CTM Blocks. The decoder of MTMamba contains
two types of core blocks: STM and CTM blocks. We experiment on NYUDv2 to
study the effectiveness of each type when the encoder is fixed as a Swin-Large
Transformer. The results are shown in Table 2, where “Multi-task” represents
an MTL model using two standard Swin Transformer blocks in each decoder
stage for each task, and “Single-task” is the single-task counterpart of “Multi-
task” (i.e., each task has a task-specific encoder-decoder). According to Table
2, the STM block achieves better performance and is more efficient than the
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Table 5: Effectiveness of cross-task inter-
action in CTM block, i.e., Equation (24),
on the NYUDv2 dataset. Swin-Large en-
coder is used in this experiment. “adaptive
gt” means that gt is computed by Equation
(23). ↑ (↓) indicates that a higher (lower)
result corresponds to better performance.

Semseg Depth Normal Boundary ∆m[%]
mIoU↑ RMSE↓ mErr↓ odsF↑ ↑

gt = 0 55.37 0.5087 18.76 78.30 +1.77
gt = 1 54.50 0.4981 18.83 78.20 +1.76

adaptive gt 55.82 0.5066 18.63 78.70 +2.38

Table 6: Performance of MTMamba
with different scales of Swin Trans-
former encoder on the NYUDv2
dataset. ↑ (↓) indicates that a higher
(lower) result corresponds to better
performance.

Encoder Semseg Depth Normal Boundary
mIoU↑ RMSE↓ mErr↓ odsF↑

Swin-Tiny 49.25 0.5299 19.74 76.90
Swin-Small 51.93 0.5246 19.45 77.80
Swin-Base 53.62 0.5126 19.28 77.70
Swin-Large 55.82 0.5066 18.63 78.70

Swin Transformer block (♠ vs. “Multi-task”), demonstrating that Mamba is more
beneficial to multi-task dense prediction. Simply increasing the number of STM
blocks from two to three fails to boost the performance. However, when the
CTM is used, MTMamba has a significantly better performance in terms of
∆m (⋆ vs. ♠/■). Moreover, the default configuration of MTMamba (i.e., ⋆)
significantly outperforms “Single-task” on all tasks, showing that MTMamba is
more powerful.

Effectiveness of MFE Module. As shown in Figure 2, the MFE module is SSM-
based and is the core of both STM and CTM blocks. We conduct an experiment
by replacing all MFE modules in MTMamba with the attention module. As
shown in Table 3, MFE is more effective and efficient than attention.

Effectiveness of Linear Gate. As shown in Figure 2, in both STM and CTM
blocks, we use an input-dependent gate to select useful representations adap-
tively from MFE modules. The linear layer is a simple but effective option for
the gate function. We conduct an experiment by replacing all linear gates in
MTMamba with the attention-based gate on the NYUDv2 dataset. As shown in
Table 4, the linear gate (i.e., MTMamba) performs comparably to the attention
gate in terms of ∆m, while the linear gate is more efficient.

Effectiveness of Cross-task Interaction in CTM Block. The core of the CTM
block is the cross-task interaction, i.e., Equation (24), where we fuse task-specific
representation z̃t and shared representation z̃sh via a task-specific gate gt. In this
experiment, we study its effectiveness by comparing it with the cases of gt = 0
and gt = 1. The experiments are conducted with a Swin-Large Transformer
encoder on NYUDv2. The results are shown in Table 5. As can be seen, using
a specific z̃t (i.e., the case of gt = 0) or shared z̃sh (i.e., the case of gt = 1)
degrades the performance, demonstrating that the adaptive fusion is better.

Performance on Different Encoders. In this experiment, we investigate the per-
formance of the proposed MTMamba with different scales of Swin Transformer
encoder on the NYUDv2 dataset. The results are shown in Table 6. As can be
seen, as the model capacity increases, all the tasks perform better accordingly.
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Fig. 3: Visualization of the final decoder feature of semantic segmentation. Compared
with InvPT [47], our method generates more discriminative features.
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Fig. 4: Qualitative comparison with state-of-the-art method (i.e., InvPT [47]) on the
NYUDv2 dataset. The proposed method generates better predictions with more accu-
rate details as marked in yellow circles. Zoom in for more details.

4.4 Qualitative Evaluations

Visualization of Learned Features. Figure 3 shows the comparison of the final
decoder feature between MTMamba and Transformer-based method InvPT [47]
in the semantic segmentation task. As can be seen, our method highly activates
the regions with contextual and semantic information, which means it captures
more discriminative features, resulting in better segmentation performance.
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Fig. 5: Qualitative comparison with state-of-the-art method (i.e., InvPT [47]) on the
PASCAL-Context dataset. The proposed method generates better predictions with
more accurate details as marked in yellow circles. Zoom in for more details.

Visualization of Predictions. We conduct qualitative studies by comparing the
output predictions from our proposed MTMamba against the state-of-the-art
Transformer-based method, InvPT [47]. Figures 4 and 5 show the qualitative
results on the NYUDv2 and PASCAL-Context datasets, respectively. As can
be seen, our method has better visual results than InvPT in all tasks. For
example, as highlighted with yellow circles in Figure 4, MTMamba generates
more accurate results with better alignments for the semantic segmentation task
and clearer object boundaries for the object boundary detection task. Figure 5
demonstrates that MTMamba produces better predictions with more accurate
details (like the fingers as highlighted) for both semantic segmentation and hu-
man parsing tasks and more distinct boundaries for the object boundary detec-
tion task. Hence, both qualitative study (Figures 4 and 5) and quantitative study
(Table 1) show the superior performance of the proposed MTMamba method.

5 Conclusion

In this paper, we propose MTMamba, a novel multi-task architecture with a
Mamba-based decoder for multi-task dense scene understanding. With two core
blocks (STM and CTM blocks), MTMamba can effectively model long-range
dependency and achieve cross-task interaction. Experiments on two benchmark
datasets demonstrate that the proposed MTMamba achieves better performance
than previous CNN-based and Transformer-based methods.
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