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Abstract. Pre-training followed by fine-tuning is widely adopted among
practitioners. The performance can be improved by “model soups” [46]
via exploring various hyperparameter configurations. The Learned-Soup,
a variant of model soups, significantly improves the performance but suf-
fers from substantial memory and time costs due to the requirements of
(i) having to load all fine-tuned models simultaneously, and (ii) a large
computational graph encompassing all fine-tuned models. In this paper,
we propose Memory Efficient Hyperplane Learned Soup (MEHL-Soup)
to tackle this issue by formulating the learned soup as a hyperplane opti-
mization problem and introducing block coordinate gradient descent to
learn the mixing coefficients. At each iteration, MEHL-Soup only needs
to load a few fine-tuned models and build a computational graph with one
combined model. We further extend MEHL-Soup to MEHL-Soup+ in a
layer-wise manner. Experimental results on various ViT models and data
sets show that MEHL-Soup(+) outperforms Learned-Soup(+) in terms
of test accuracy, and also reduces memory usage by more than 13×.
Moreover, MEHL-Soup(+) can be run on a single GPU and achieves 9×
speed up in soup construction compared with the Learned-Soup. The
code is released at https://github.com/nblt/MEHL-Soup.
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1 Introduction

Pre-training followed by fine-tuning is a widely adopted training pipeline for deep
neural networks [7, 18, 19, 49, 50]. Typically, one starts with a large model pre-
trained on an extensive collection of datasets and then fine-tunes multiple models
with various hyperparameter configurations to seek better performance. To max-
imize the benefits of these fine-tuned models, the concept of “model soups” [46]
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has been introduced to selectively average the weights of these models for an
improved souping model while keeping the inference efficiency as a single model.
Model soups have achieved significant success and widely used in various do-
mains, such as out-of-distribution performance [4, 32, 46], reinforcement learn-
ing [33], model pruning [48,52], and adversarial robustness [5, 10].

There are two representative categories of model soups: (i) greedy soup [4,32,
46], in which fine-tuned models are added to the soup sequentially in a greedy
order; and (ii) learned soup [22, 46], in which models are mixed by coefficients
learned from a validation set. Greedy soup is simple and effective, but may not
explore the full potential of all fine-tuned models as the models in the soup
are equally averaged while others are discarded [42]. The learned soup, which
learns the soup’s mixing coefficients via gradient-based optimization on the vali-
dation set, is more general and achieves better performance (e.g., test accuracy)
in practice [10, 46]. However, the learned soup suffers from a heavy burden in
computation and memory since it requires loading all models into memory si-
multaneously and building a computational graph on all models. For example,
Learned-Soup requires more than 200GB of memory for averaging 72 fine-tuned
ViT-B/32 models [31], and thus the training process has to be conducted in
CPU memory [46], which is time-consuming. Hence, Learned-Soup is inefficient
in both memory and computation, hindering its application to large models.

In this paper, we develop a scalable and efficient approach to learning the
model soup. It works well under limited computational resources, even on a single
GPU. We formulate the learned soup as a subspace learning problem and propose
a hyperplane optimization objective, which only requires a computational graph
on the combined model. Furthermore, we introduce block coordinate gradient
descent [29, 44, 47] to optimize the mixing coefficients, where only a mini-batch
of models needs to be loaded into memory at each iteration. This not only scales
well but also achieves better performance as the introduced stochasticity benefits
generalization [2, 20,41].

The proposed Memory-Efficient Hyperplane Learned Soup (MEHL-Soup)
maintains memory and time efficiency while benefiting significant performance
improvement from trainable coefficients. Furthermore, it is extended in a layer-
wise manner (MEHL-Soup+) for boosting performance. To be specific, our main
contributions can be summarized as follows:

– We propose MEHL-Soup(+), a computation- and memory-efficient approach
to learning the mixing coefficients of model soup based on a novel hyperplane
optimization objective, which allows for learning extrapolated coefficients.

– We adopt block coordinate gradient descent to enable training of the model
soup scalable and memory-efficient, which can be run on a single GPU.
Convergence of MEHL-Soup(+) is also established.

– Experimental results show that MEHL-Soup(+) brings 13× reduction in
memory and 9× in soup construction time compared with Learned-Soup(+)
along with consistently better performance. Moreover, our findings reveal
that compared to Greedy-Soup, MEHL-Soup(+) substantially reduces the
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cost of fine-tuning and exhibits lower sensitivity to top-performing fine-tuned
models, making it more preferable in practice.

2 Related Work

Weight Averaging is a widely used technique in deep learning and optimiza-
tion for improving generalization [14,32,43,46] and convergence [11,17,22,28,39].
Along the same training trajectory, Izmailov et al. [14] show that averaging the
weights at the latter stage of training accompanied with a constant learning rate
schedule can significantly improve generalization. Kaddour et al. [17] introduce
the latest weight averaging (LAWA) to accelerate the convergence of training.
In the context of combining weights from different training trajectories, Worts-
man et al. [46] propose to selectively combine multiple fine-tuned models in the
parameter space to boost performance. The combined model is also called a
model soup [46]. In inference, only the model soup needs to be deployed and
served. Thus, it is computation- and memory-efficient compared with serving all
fine-tuned models to combine models in the output space (i.e., model ensem-
ble [51]). Model averaging has achieved promising performance in a wide variety
of applications, including federated learning [3], robust training [1,34], and multi-
task training [12,27,30], open-vocabulary recognition [13], and language models
alignment [33].
Subspace Training. Recent studies [8,21,23,25,45] show that neural networks
can be learned in a tiny subspace. The subspace can be constructed from ran-
dom basis [8, 21], training dynamics [23], models fine-tuned from a pre-trained
model [46], and multiple task-specific models [15]. Existing subspace training
methods require loading all models into the memory and constructing a compu-
tational graph on all of them, leading to the scalability issue for large models. In
contrast, the training strategy proposed in this work only needs a computational
graph on the combined model and loads a mini-batch of models.
Preliminary. Let X ⊆ Rd be a compact metric space and Y ⊆ N be the la-
bel space for classification. The training data Dtr = {(xi, yi)}ni=1 and validation
data Dvl are drawn from an unknown probability distribution on X ×Y. We aim
at seeking a hypothesis (i.e., deep network in this work) f : X → Y such that
f(x,θ), parameterized by θ, is a good approximation of the label y corresponding
to a new sample x ∈ X . The loss function ℓ(f(x,θ), y) (e.g., cross-entropy loss)
measures the discrepancy between the prediction f(x,θ) and label y. The gener-
alization performance can be evaluated by the expected risk E(x,y)ℓ(f(x,θ), y).

Let θ = fine-tune(Dtr,θ0, h) be the model parameters obtained through
fine-tuning on the training data Dtr with pre-trained weights θ0 and a specific
hyperparameter configuration h. This hyperparameter configuration can encom-
pass aspects such as the learning rate, weight decay, data augmentation, and
random seed, among others [46]. For a set of K hyperparameter configurations
{hk}Kk=1, let θk = fine-tune(Dtr,θ0, hk) denote the model parameters obtained
through fine-tuning with the kth configuration hk. Accordingly, the fine-tuned
models {θk}Kk=1 can be combined together to enhance generalization perfor-
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mance. We review representative model soup methods introduced by Wortsman
et al. [46]

Uniform-Soup (θUS) (or SWA [14]) is the most straightforward method to
obtain a model soup by uniformly averaging all fine-tuned models:

θUS =
1

K

K∑
k=1

θk. (1)

This simple averaging approach may not always enhance generalization per-
formance, as the hyperparameters used for fine-tuning are typically randomly
searched and can exhibit significant diversity.

Greedy-Soup improves Uniform-Soup by selectively averaging a subset of
models. Specifically, it first sorts the fine-tuned models according to their valida-
tion accuracies and then sequentially adds models to the soup if the validation
performance of the soup is improved. Greedy-Soup empirically outperforms uni-
form soup and is adopted by practitioners.

Learned-Soup (θLS) constructs a model soup by learning coefficients to
combine the fine-tuned models. The objective is formulated as follows:

min
α

L(θLS;Dvl)

s.t. θLS = α1θ1 + α2θ2 + · · ·+ αKθK ,

α1 + α2 + · · ·+ αK = 1,

αk ∈ [0, 1], k = 1, . . . ,K.

(2)

Solving a constrained optimization problem is challenging. In practice, Worts-
man et al. [46] resolve this problem by introducing a parameterization of α
using the softmax function, ensuring that each αk lies in [0, 1] and their val-
ues sum up to one. The Learned-Soup can be further enhanced by considering
the layer-wise structure of deep networks and assigning individual coefficients to
each layer. The Learned-Soup is general but needs to load all fine-tuned models
in the memory and build the computational graph on all fine-tuned models for
learning α, which is infeasible due to memory and computation considerations.
Hence, the Learned-Soup is rarely used in practice compared with the Greedy-
Soup. In this work, we propose an efficient algorithm to address the memory and
computational issues of the Learned-Soup. Different from the Learned-Soup, the
proposed algorithm only needs to build the computational graph on the com-
bined model and load a mini-batch of fine-tuned models.

3 Methodology

In this section, we present our memory-efficient learned soup approach. We start
by formulating the optimization target as a hyperplane optimization problem
(Sec. 3.1), then introduce our efficient coefficient optimization method (Sec. 3.2),
and finally employ block coordinate gradient descent to avoid loading all fine-
tuned models for learning coefficients (Sec. 3.3).
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3.1 Subspace Learning: Hyperplane Optimization Target

For learning the mixing coefficients, the Learned-Soup [46] proposes to learn from
a probability simplex using the softmax operation. Specifically, a softmax layer
is applied to the learnable variables to output the coefficient vector α, which
naturally satisfies the convex-hull constraints: αk ∈ [0, 1] and

∑K
k=1 αk = 1.

However, recent studies [5, 34] show that interpolation within the convex hull
may lead to sub-optimal performance, and extrapolation is more general and
can perform better.

Previous computations of the extrapolation weights are normally based on
grid search for just two models [5, 34]. It becomes less efficient when merging
numerous fine-tuned models as the solution space grows exponentially with the
number of models involved. In this work, we develop a novel approach based
on subspace learning to seek mixing coefficients that incorporate extrapolation.
This relaxes the solution space from a convex hull to a hyperplane spanned by
the fine-tuned models θk’s. Formally, the objective in Eq. (2) is changed to:

min
α

L(θ⋆;Dvl)

s.t. θ⋆ = θ̄ + α1(θ1 − θ̄) + α2(θ2 − θ̄) + · · ·+ αK(θK − θ̄) ,
(3)

where θ̄ := 1
K

∑K
k=1 θk. One can see that the constraints on α have been re-

moved to allow for extrapolation, and the combined model θ⋆ lies in a hyperplane
spanned by {θk}Kk=1. Note also that Eq. (3) uses θi − θ̄ instead of θi, which re-
duces the correlations among θi’s, which also enables better performance (please
refer to Appendix D for more details). We refer to this approach as the Hyper-
plane Learned Soup (HL-Soup) to distinguish it from previous methods focusing
on the convex hull.

Note that the mixing coefficients still sum to one, allowing for numerical
stability. To see that, θ⋆ in Eq. (3) can be equivalently rewritten as:

θ⋆ =

K∑
k=1

(
1

K
+ αk − 1

K

K∑
k′=1

αk′

)
θk , (4)

which leads to the identity
∑K

k=1

(
1
K + αk − 1

K

∑K
k′=1 αk′

)
= 1. By doing so, we

can effectively incorporate extrapolation into the weight combination, leading to
improved performance.

To further enhance the representation ability of HL-Soup, we introduce a
layer-wise mixing scheme called HL-Soup+ as follows:

min
α

L(θ⋆;Dvl)

s.t. θ
(l)
⋆ = θ̄(l)+α

(l)
1 (θ

(l)
1 −θ̄(l))+α

(l)
2 (θ

(l)
2 −θ̄(l))+· · ·+α

(l)
K (θ

(l)
K −θ̄(l)) ,

l ∈ {0, 1, . . . , L} .

(5)

The use of layer-wise averaging facilitates a more precise manner of model av-
eraging, thereby enhancing the utilization of fine-tuned models and resulting in
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better performance. In Sec. 4.3, we will show that in order to achieve similar
test performance, the layer-wise approach requires fewer fine-tuned models com-
pared to the greedy soup, which leads to significant computational savings in
the fine-tuning stage.

3.2 Efficient Coefficient Optimization

How to efficiently optimize the mixing coefficients α in Eq. (5) is one of the
main targets of this work. The classical approach is to construct a computational
graph by wrapping all the fine-tuned models and then compute the respective
gradient under forward and backward propagation [46]. This method is memory-
inefficient due to (i) multiple memory footprints for the internal computational
state to build the computational graph; and (ii) all fine-tuned models need to
be loaded.

Indeed, the memory issue associated with optimizing the mixing coefficients
has been acknowledged as an ongoing challenge [46]. To address this, Wortsman
et al. [46] initially propose combining models in CPU rather than GPU, as CPU
generally offers larger memory capacities. However, training on the CPU can be
substantially slower compared to training on the GPU. Additionally, despite this
adjustment, the memory issue is not entirely resolved since the memory capacity
of the CPU still remains limited.

In this work, by using the proposed hyperplane optimization, we can conve-
niently derive the gradient with respect to αk as follows:

∇αk
L(θ⋆;Dvl) = ∇⊤

θ⋆
L(θ⋆;Dvl)∇αk

θ⋆ = ∇⊤
θ⋆
L(θ⋆;Dvl)(θk − θ̄) . (6)

To simplify notations, we consider the non-layer-wise case here. Extension to the
layer-wise case is straightforward. The first component ∇⊤

θ⋆
L(θ⋆;Dvl) in Eq. (6)

is shared across all fine-tuned models, and thus only one computational graph
on the model soup θ⋆ is required. The second component, θk − θ̄, is specific to
the kth fine-tuned model. Hence, {∇αk

L(θ⋆;Dvl)}Kk=1 only needs the computa-
tional graph on θ⋆, which is affordable for a single GPU. Thus, this addresses the
additional memory burden caused by computational graph construction, which
typically requires memory that is multiple times the model size (Sec. 4.1). More-
over, the simple inner product operation in Eq. (6) is particularly advantageous
for leveraging GPU acceleration. The remaining memory burden is caused by
caching all fine-tuned models and will be resolved in the next section.

3.3 Block Coordinate Gradient Descent

To avoid caching all the fine-tuned models, we borrow the classical idea of block
coordinate gradient descent (BCGD) [29,36,37,44] for stochastic approximation:
We randomly select and update a block of variables by gradient descent at each
iteration while keeping the remaining variables fixed. This allows for learning
the coefficients without caching all fine-tuned models in memory.
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Formally, at iteration t, we sample a mini-batch of b coordinates Kt={t1, . . . , tb}
⊆ {1, . . . ,K} and update {αk,t : k ∈ Kt} while keeping {αk,t : k /∈ Kt} un-
changed. Obviously, computation for {∇αk,t

L(θ⋆;Dvl) : k /∈ Kt} at iteration t
is not included in BCGD, and only the fine-tuned models corresponding to the
chosen coordinates in Kt are considered. To be specific, let θ⋆,t be the model
soup at iteration t. By Eq. (6), the update rule for one gradient descent step of
the mixing coefficients can be written as:

αk,t+1 =

{
αk,t − η∇⊤

θ⋆,t
L(θ⋆,t;Dvl)(θk − θ̄) if k ∈ Kt

αk,t if k /∈ Kt

(7)

Using the updated coefficients, we update the model soup as:

θ⋆,t+1 = θ̄ +

K∑
k=1

αk,t+1(θk−θ̄)

= θ⋆,t −
∑
k∈Kt

αk,t(θk−θ̄) +
∑
k∈Kt

αk,t+1(θk−θ̄)︸ ︷︷ ︸
independent of {θk′ : k′ /∈ Kt}

. (8)

Therefore, the new soup θ⋆,t+1 can be constructed from the previous soup θ⋆,t
and a weighted combination of the chosen fine-tuned models. In total, we only
need to cache b+ 1 models (one model soup and b fine-tuned models), which is
much more memory-efficient than the Learned-Soup [46] that requires caching
K + 1 models. Together with Eq. (7), the mixing coefficients can be learned
without the necessity of loading all models, which effectively resolves the memory
issue from O(KD) to O(bD), where D is the number of model parameters.

The process of loading/unloading a mini-batch of models into memory at each
iteration is time-consuming. To improve efficiency, at each (outer) iteration t, we
load the chosen models {θk : k ∈ Kt} and update the corresponding coefficients
{αk : k ∈ Kt} for J successive (inner) iterations. The whole procedure of learning
layer-wise mixing coefficients, called a Memory-Efficient training algorithm for
a Hyperplane Learned Soup (denoted MEHL-Soup+), is shown in Algorithm 1.
MEHL-Soup+ is memory-efficient and scalable to large and numerous models.

3.4 Convergence Analysis

In this section, we study the convergence of Algorithm 1. We first make some
assumptions that are standard in stochastic optimization [6, 16,24,26,35,40].

Assumption 1 (Smoothness) L(α;Dvl) is β-smooth in α, i.e.,

∥∇αL(α;Dvl)−∇α′L(α′;Dvl)∥ ≤ β∥α−α′∥.

Assumption 2 (Bounded variance) There exists σ > 0 such that

E(x,y)∼Dvl

∥∥∇αℓ(f(x;α), y)−∇αL(α;Dvl)
∥∥2 ≤ σ2.
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Algorithm 1: MEHL-Soup+.
Input: potential soup ingredients {θ1, · · · ,θK}, outer iterations T , inter

iterations J , model mini-batch size b, #layers L, learning rate η
Output: learned soup θ⋆

1 θ̄ = 1
K

∑K
k=1 θk;

2 initialize θ⋆,0 = θ̄, αk,0 = 0 for k = 1, . . . ,K;
3 for t = 1, . . . , T do
4 sample a mini-batch of b coordinates Kt = {t1, . . . , tb};
5 load the fine-tuned models {θk}k∈Kt ;

6 θ
(l)
fix =stop_gradient

(
θ
(l)

⋆,(t−1)J−
∑

k∈Kt
α
(l)

k,(t−1)J(θ
(l)
k −θ̄(l))

)
for l=0, . . . , L;

7 for j = 1, . . . , J do
8 compute #iterations i = (t− 1)J + j − 1;
9 θ

(l)
⋆,i = θ

(l)
fix +

∑
k∈Kt

α
(l)
k,i(θ

(l)
k − θ̄(l)) for l = 0, . . . , L;

10 sample a mini-batch validation data Bi from Dvl;
11 calculate gradients {∇αk,iL(θ⋆,i;Bi) : k ∈ Kt} by Eq. (6) for l=0, . . . , L;
12 for k = 1, . . . ,K do
13 if k ∈ Kt then
14 αk,i+1 = αk,i − η∇αk,iL(θ⋆,i;Bi);

15 else
16 αk,i+1 = αk,i;

17 θ
(l)
⋆,tJ = θ

(l)
fix +

∑
k∈Kt

α
(l)
k,tJ(θ

(l)
k − θ̄(l)) for l = 0, . . . , L;

18 return θ⋆,TJ .

Theorem 3. If the learning rate η ≤ min{ 1
β ,

1√
T
}, Algorithm 1 satisfies

min
1≤t≤T

E∥∇α·,tJL(α·,tJ ;Dvl)∥2≤
2K

(
EL(α·,1;Dvl)−EL(α·,TJ ;Dvl)

)
b
√
T

+
βJσ2K

b
√
T

,

where the expectation is taken over the random mini-batch of samples and models.

The proof can be found in Appendix A. The O
(

1√
T

)
speed matches the conver-

gence rate in [6]. Moreover, we can see that increasing the batch size b of models
decreases the upper bound. As a large b intensifies the burden on memory, there
is a trade-off between convergence rate and memory-efficiency. When b = K, it
reduces to the learned soup with extrapolated mixing weights.

4 Experiments

In this section, experiments are performed to demonstrate the efficiency and
effectiveness of the proposed methods. We begin by evaluating various model
soup methods on the ImageNet dataset. We then conduct experiments specifi-
cally targeting a larger model. Finally, we provide a detailed comparison between
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Table 1: Comparison of different methods on ImageNet with pre-trained CLIP ViT-
B/32. The number of fine-tuned models is 72. We measure the time and memory on a
server with one NVIDIA GeForce RTX 4090 GPU and 256 GB RAM.

Testing Time Soup Peak
Method accuracy per #epoch construction memory

(%) epoch time burden

Best individual model 80.38 - - - -

Uniform-Soup [14] 79.97 - - - -
Greedy-Soup [46] 81.03 24s 143a 3501s 3GB

Learned-Soup [46] 80.88 1503s 5 7514s 249GBb

HL-Soup (ours) 81.14 496s 5 2479s 43GBb

MEHL-Soup (ours) 81.20 39s 20c 776s 18GB

Learned-Soup+ [46] 81.39 1540s 5 7701s 253GBb

HL-Soup+ (ours) 81.45 581s 5 2903s 44GBb

MEHL-Soup+ (ours) 81.62 40s 20c 808s(↓ 9.5×) 19GB(↓ 13×)

Ensembled 81.19 - - - -
a

Greedy-Soup involves two evaluation stages: the first stage evaluates all models and sorts
them, while the second stage sequentially adds each model to the soup.

b
We place the fine-tuned models in CPU memory following [46] and report CPU memory
usage as it is too large to fit into 24 GB GPU memory.

c
We use a mini-batch of 18 models and hence the corresponding number of training epochs
for MEHL-Soup(+) is 4x longer than those of learned soup and HL-Soup(+).

d
Ensemble directly utilizes the outputs of all models and does not require soup construction.

greedy and learned soup methods and ablation studies. More experiments on
ResNet [9] can be found in Appendix C.

4.1 Experiments on ViT-B/32

Setup. Following [46], we perform experiments on the ImageNet [38] using the
pre-trained CLIP ViT-B/32. We use the publicly available fine-tuned models
provided by [46]. They are obtained by a random hyperparameter search over
the learning rate, weight decay, training epochs, label smoothing, and data aug-
mentation, resulting in a total of 72 fine-tuned models. Training details can be
found in Appendix B.
Baselines. The proposed HL-Soup(+) and MEHL-Soup(+) are compared with
(i) Best individual model with the highest accuracy on the validation set, (ii)
Uniform-Soup [14], which averages all model parameters uniformly, (iii) Greedy-
Soup [46], which greedily adds models to the soup to improve validation accuracy,
(iv) Learned-Soup [46], which learns coefficients to combine models, and (v)
Ensemble, which combines the outputs of all fine-tuned models by aggregating
their logit outputs. All methods use the same fine-tuned models and validation
set. We utilize the official code provided by [46] for reproducing Greedy-Soup
and Learned-Soup.
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Results. As can be seen from Tab. 1, MEHL-Soup+ achieves the highest accu-
racy. Besides, MELH-Soup+ achieves an accuracy gain of 1.24% over the best
individual model, demonstrating the effectiveness of learning the model soup.

Comparison with Greedy-Soup. The proposed learned soup approaches outper-
form Greedy-Soup by an accuracy gain of 0.17% via MEHL-Soup and 0.59%
via MEHL-Soup+, respectively. Regarding the soup construction time, MEHL-
Soup(+) is 4× faster than Greedy-Soup. Recall that for Greedy-Soup, the num-
ber of validation performance evaluations is equal to twice the number of fine-
tuned models (one on sorting the fine-tuned models and one for performance
evaluation after each candidate model is added to the soup). This can be even
larger than the number of training epochs for MEHL-Soup(+), particularly when
there are numerous models, e.g., 143 epochs of validation for Learned-Soup(+)
and 20 epochs training for MEHL-Soup(+) with 72 models, and thus MEHL-
Soup(+) can be faster.

Comparison with Learned-Soup. MEHL-Soup achieves higher accuracy (+0.32%)
than Learned-Soup. The source of accuracy improvement may come from the
weight extrapolation (i.e., mixing coefficients outsize (0,1)) is more flexible than
the Learned-Soup whose coefficients are constrained in (0, 1) due to softmax
parameterization. This observation also agrees with recent findings [5, 34] that
weight extrapolation can boost the performance of combining two models. For
the layer-wise scheme, MEHL-Soup+ also performs better than Learned-Soup+.
In particular, note that for the non-layerwise scheme, Learned-Soup is worse
than Greedy-Soup while the proposed MEHL-Soup still achieves higher accuracy,
confirming that learning mixing coefficients from the hyperplane is better than
the probability simplex.

Regarding the soup construction time and memory burden, Learned-Soup
incurs a significant memory burden, with peak memory reaching as high as 253
GB. This is primarily due to the need to build a computational graph on all
fine-tuned models, which severely increases the additional memory overhead.
The burden becomes particularly evident when dealing with larger models. Con-
sequently, the process of combining models has to be carried out in CPU memory,
significantly slowing down the training speed. Instead, by our subspace training
approach and employing a mini-batch coordinate gradient descent strategy, we
successfully reduce the memory burden by 13×, allowing efficient training with
a single GPU, and then remarkably reduce the corresponding soup construction
time by 9.5×.

Comparison with Ensemble. We observe that our learned approach can signif-
icantly outperform the model ensemble (e.g., by +0.43% with MEHL-Soup+).
Note that ensemble typically requires higher inference costs since they involve
aggregating the outputs of all models.

In all, the proposed MEHL-Soup(+) addresses the huge memory require-
ments of previous methods, enabling scalability and efficient execution on a single
GPU. Moreover, MEHL-Soup(+) achieves higher accuracy than Greedy-Soup.

Visualization of Mixing Coefficients. Fig. 1 shows the distributions of mixing
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Fig. 1: Distributions of mixing coeffi-
cient over all layers and models learned
by MEHL-Soup+ and Learned-Soup+
on ImageNet with CLIP ViT-B/32.

coefficients for all the layers and fine-
tuned models learned by MEHL-Soup+
and Learned-Soup+. As can be seen,
MEHL-Soup+ learns extrapolated coef-
ficients (i.e., values outside [0, 1]), but
Learned-Soup+ enforces the constraint
that coefficients must lie in the range
(0, 1). The extrapolated coefficients can
lead to better performance as demon-
strated in Tables 1 and 2. Furthermore,
as can be seen, most of the coefficients
are close to zero for both methods.

4.2 Experiments on Larger ViT-L/14

After resolving the memory issues, the proposed training approach can be used
to learn mixing coefficients for combining larger models, which is impractical for
the previous Learned-Soup method due to the substantial memory requirement.
To demonstrate this, we adopt the CLIP ViT-L/14 model1 [31] and evaluate
on three datasets: CIFAR-10, CIFAR-100, and ImageNet. The fine-tuning and
training details can be found in Appendix B.

Tab. 2 shows the results. As can be seen, MEHL-Soup+ consistently achieves
higher accuracy than Greedy-Soup (+0.12% on CIFAR-10, +0.38% on CIFAR100,
and +0.39% on ImageNet). Moreover, when there are 32 fine-tuned models,
Learned-Soup requires over 256GB of memory and cannot be run even on a
CPU. In contrast, MEHL-Soup+ still remains memory-efficient and can be run
on a single GPU.

4.3 Further Comparison between Greedy and Learned Soups

Apart from comparisons of efficiency and performance between different model
soup methods, here we delve further into a comprehensive comparison between
MEHL-Soup+ and Greedy-Soup from two perspectives: (i) total fine-tuning cost,
and (ii) sensitivity to top-performing models, which have not been explored in
the previous literature yet are of importance for practical usage.
Test accuracy vs total fine-tuning cost. In previous comparisons, we mainly
focus on the model soup stage, where all fine-tuned models are already obtained.
However, in many real-world scenarios, these models are fine-tuned with differ-
ent hyperparameter configurations determined by grid/random search. Typi-
cally, the time cost of fine-tuning a single model is much larger than that of the
model soup construction. For example, fine-tuning a CLIP ViT-B/32 on Ima-
geNet requires around 4 GPU hours, while model soup training takes less than
1 hour. This is because fine-tuning is performed on the training set, which is

1 ViT-L/14 contains 343M parameters, while ViT-B/32 contains only 87M parameters.
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Table 2: Comparison of different methods with pre-trained CLIP ViT-L/14. The num-
ber of fine-tuned models is 32 for CIFAR-10/100 and 8 for ImageNet. We measure the
time and memory on a server with one NVIDIA GeForce RTX 4090 GPU and 256 GB
RAM. “n/a” means the result is not available due to Out-Of-Memory.

Testing Time Soup Peak
Method accuracy per #epoch construction memory

(%) epoch time burden

C
IF

A
R

-1
0

Best individual model 98.93 - - - -

Uniform-Soup [14] 99.23 - - - -
Greedy-Soup [46] 99.15 80s 63 5046s 6GB

Learned-Soup [46] n/a n/a n/a n/a >256GB
HL-Soup (ours) 99.25 1203s 5 6015s 49GB
MEHL-Soup (ours) 99.26 199s 20 3976s 23GB

Learned-Soup+ [46] n/a n/a n/a n/a >256GB
HL-Soup+ (ours) 99.24 1241s 5 6205s 49GB
MEHL-Soup+ (ours) 99.27 199s 20 3988s 23GB

Ensemble 99.14 - - - -

C
IF

A
R

-1
00

Best individual model 92.49 - - - -

Uniform-Soup [14] 93.05 - - - -
Greedy-Soup [46] 93.32 81s 63 5084s 6GB

Learned-Soup [46] n/a n/a n/a n/a >256GB
HL-Soup (ours) 93.41 1251s 5 6255s 50GB
MEHL-Soup (ours) 93.52 200s 20 4002s 23GB

Learned-Soup+ [46] n/a n/a n/a n/a >256GB
HL-Soup+ (ours) 93.59 1255s 5 6275s 50GB
MEHL-Soup+ (ours) 93.70 205s 20 4100s 23GB

Ensemble 93.65 - - - -

Im
ag

eN
et

Best individual model 85.48 - - - -

Uniform-Soup [14] 85.11 - - - -
Greedy-Soup [46] 85.64 473s 15 7097s 6GB

Learned-Soup [46] 85.20 7340s 5 36700s 90GB
HL-Soup (ours) 85.70 950s 5 4748s 23GB
MEHL-Soup (ours)a 85.70 950s 5 4748s 23GB

Learned-Soup+ [46] 85.53 7372s 5 36858s 90GB
HL-Soup+ (ours) 86.03 1066s 5 5330s 23GB
MEHL-Soup+ (ours)a 86.03 1066s 5 5330s(↓ 6.9×) 23GB(↓ 3.9×)

Ensemble 86.10 - - - -
a MEHL-Soup(+) recovers HL-Soup(+) as we use a mini-batch of 8 models, which can

fit into a single GPU.

usually much larger than the validation set used in model soup training. Thus,
it is necessary to take the cost of fine-tuning stage into consideration.

To investigate this, we gradually increase the number of fine-tuned mod-
els and measure the test accuracies achieved by Greedy-Soup and our MEHL-
Soup+, as well as the corresponding total fine-tuning costs. Results are shown in
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Table 3: Test accuracies (%) of different model soup methods after eliminating dif-
ferent numbers of top-performing models. We sort the fine-tuned CLIP ViT-B/32
models on ImageNet (Sec. 4.1) according to the validation accuracy and compare the
performance of Greedy-Soup and MEHL-Soup+ after eliminating 2, 22, and 42 top-
performing models.

models eliminated - Top-2 Top-22 Top-42

Greedy-Soup 81.03 80.78 80.08 79.70
MEHL-Soup+ 81.62(+0.59) 81.58(+0.80) 81.44(+1.36) 81.01(+1.31)

50 100 150 200 250
Total time cost (GPU hours)

79.0

79.5

80.0

80.5

81.0

81.5

82.0

Te
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 a
cc
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ac

y 
(%

)

9

18

27

36
45 54 63 72

9

18

27

36 45 54 63 72

>2.5 × Faster

MEHL-Soup+
Greedy-Soup

Fig. 2: Test accuracy comparison
of Greedy-Soup and MEHL-Soup+
w.r.t. fine-tuning time cost. The
experiment is performed on Ima-
geNet with CLIP ViT-B/32. We
use different numbers of fine-tuned
models (displayed near the points)
and measure their corresponding
fine-tuning time costs. The model
sequence follows the original ran-
dom search order provided in [46].

Fig. 2. It is evident that to reach compa-
rable test accuracy, MEHL-Soup+ requires
significantly fewer GPU hours than Greedy-
Soup. For example, to attain a test accuracy
of 81%, Greedy-Soup requires over 200 GPU
hours while MEHL-Soup+ takes fewer than
100 GPU hours, a more than 2.5× reduction.
This is because MEHL-Soup+ achieves this
performance with fewer than 27 fine-tuned
models, thanks to its ability to perform layer-
wise weighted averaging with much better per-
formance. In contrast, Greedy-Soup requires
more than 54 models to achieve similar re-
sults. Thus, such efficiency in the fine-tuning
cost of MEHL-Soup+ brings further efficiency
over Greedy-Soup beyond soup construction.
Sensitivity to top-performing models.
To initialize the greedy soup, one selects the
fine-tuned model with the best validation per-
formance. The remaining fine-tuned models
are then sequentially tried to be added to the soup following a decreasing order
of validation performance. In practice, grid/random search is commonly em-
ployed to identify the best fine-tuning hyperparameters [46]. However, obtaining
a high-performance model through these search methods is often a challenging
task that necessitates numerous trials. Thus, it is important to examine whether
such top-performing models are important to the success of greedy soup.

To this end, we replicate the ImageNet experiment in Sec. 4.1 and sort the
models in decreasing order of validation accuracy. We then compare the perfor-
mance of Greedy-Soup and our MEHL-Soup+ after eliminating different num-
bers of top-performing fine-tuned models. From the results in Tab. 3, we can
observe that Greedy-Soup is more sensitive to the top-performing models than
MEHL-Soup+. For example, after eliminating the top-2 performance models,
Greedy-Soup experiences a significant drop of 0.25% in accuracy, while MEHL-
Soup+ shows only a negligible drop. As elimination progresses to 22 and 42 top-
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Fig. 3: Sensitivity analysis of the hyperparameters in MEHL-Soup+. The experiments
are conducted on ImageNet with CLIP ViT-B/32.

performing models, the advantage of MEHL-Soup+ over Greedy-Soup becomes
even more pronounced, resulting in an accuracy gain of 1.36%. Remarkably, even
after removing the top-42 performance models, MEHL-Soup+ still achieves an
impressive 81% test accuracy. These findings highlight that MEHL-Soup+ ex-
hibits a significantly lower reliance on top-performing models thanks to the bet-
ter flexibility by learned mixing coefficients. This low reliance holds significant
practical value and can help save some effort for hyperparameter search.

4.4 Ablation Studies

Model mini-batch size. We first investigate the effects of model mini-batch
size b in MEHL-Soup+. Fig. 3a shows that the accuracy does not vary too much
(<0.1%) as the model mini-batch size varies. In practice, one can adjust the
model mini-batch size based on the available memory of the training device.
Number of model training iterations. Here we investigate how T , the num-
ber of outer iterations, affects accuracy. In Fig. 3b, we observe that as T increases,
the performance gain becomes minor. Therefore, in our experiments (Secs. 4.1
to 4.3), we simply use one model training epoch (i.e. ⌈K/b⌉) for efficiency.
Number of inner training iterations. In Secs. 4.1 to 4.3, we use 1K inner
iterations (corresponding to 5 epochs over the validation set). We further try 2K,
3K, and 4K iterations in this ablation study. As shown in Fig. 3c, using more
inner iterations does not yield a significant performance gain.

5 Conclusion

In this paper, we studied the scaling issue of learning mixing coefficients to build
a model soup from numerous fine-tuned models. We proposed a novel approach
MEHL-Soup(+) based on efficient hyperplane optimization and block coordinate
gradient descent. MEHL-Soup(+) is computation- and memory-efficient and can
be run on a single GPU. Moreover, our method allows for extrapolated coeffi-
cients, and thus is more expressive than Learned-Soup whose coefficients are con-
strained in the probability simplex. We also theoretically established the conver-
gence of MEHL-Soup(+). Experimental results on various datasets demonstrate
that MEHL-Soup(+) is more efficient and accurate than the Learned-Soup. Fur-
thermore, we hope our strategy could be beneficial to the fine-tuning process by
unifying the fine-tuning and model averaging steps under a unified and system-
atic framework, which would lead to more efficient results.
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