
Identification for Wiener System with Discontinuous Piece-wise
Linear Function via Sparse Optimization

Weisen Jiang, Hai-Tao Fang

Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, P. R. China
E-mail: jiangweisen12@mails.ucas.ac.cn, htfang@iss.ac.cn

Abstract: This paper presents a new approach to the identification of Wiener system consisted of an ARX subsystem followed
by a static discontinuous piece-wise linear subsystem. We show this problem can be transformed into an �0-norm optimization
problem, which is intractable(NP hard). To overcome this difficulty, we consider �1-norm convex relaxation inspired by com-
pressed sensing. In the noise-free case , sufficient conditions are provided for recovering unknown parameters via �0-norm and
�1-norm minimization programs. Numerical experiments demonstrate our novel algorithms perform well in noisy measurements
case.
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1 Introduction

Many practical systems can be modeled by the system

composed of a linear subsystem cascaded with a static non-

linear subsystem. Wiener system is a system consisted of

a linear subsystem followed by a nonlinear subsystem, and

Hammerstein system is a reversed structure of Wiener sys-

tem, that is, a nonlinear subsystem is followed by a linear

subsystem.

Because of the importance of these kinds of systems in

practical applications (see [1], [2] and [3]), the identification

problem has been an active research topic for many years.

Both parametric and nonparametric approaches are utilized

according to the representation of nonlinear subsystem, e.g.

[4], [5], [6] and [7] for the former, [8], [9], [10] and [11]

for the latter. In the parametric approach, the nonlinearity is

considered as a linear combination of known functions, or is

a piece-wise function in this paper. Hence, the system can

be transformed into a linear regression form with respect to

coefficients of linear subsystem and products of coefficients

in both nonlinear and linear functions. In the nonparametric

approach, the nonlinear subsystem is usually estimated at an

arbitrary point. In this case, identification is equivalent to

estimating unknown coefficients in the series expansion.

The main contribution of this paper is that we propose a

novel method to the identification problem of Wiener sys-

tem with nonlinearity being a discontinuous piece-wise lin-

ear function, which has been studied in [4], [6], [12], [13],

etc. Both [4] and [6] provide recursive algorithms by using

stochastic approximation approach, and strongly consistent

analysis is given as well. The main drawback of these algo-

rithms is a huge amounts of data points should be obtained to

guarantee numerical convergence. This becomes intractable

when financing cost of each experiment is expensive, or con-

suming time is long, e.g. the chemical process. In con-

trast to these algorithms, our proposed method called sparse

optimization can overcome this difficulty. The intuition of

our method is that data points generated by such Wiener

system lie in the union of several hyperplanes (see Section
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Fig. 1: Wiener Model

3.1). Therefore, the identification problem is equivalent to

estimating the hyperplanes that contain most of data points,

which is known as subspace clustering problem. When a

set of data points that lie in several subspaces is given, sub-

space clustering focuses on the problem of estimating the

number of subspaces, the dimension of each subspace, and

the segmentation of data points corresponding to each sub-

space. In [14] and [15], the authors proposed a novel ap-

proach called sparse subspace clustering(SSC) to solve this

problem, which is based on the observation that the sparsest

representation of a vector would only choose vectors from

the subspace in which it happens to lie in. Here, sparse

representation means we used a few number of vectors for

representation. However, to obtain sparsest representation

we need solve �0-norm optimization problem, which is non-

convex and intractable. Instead, we utilize a classical ap-

proach called �1-norm minimization to relax this problem

and solve it approximately. We provide a sufficient condi-

tion for recovering unknown parameters via �1-norm mini-

mization in noise-free case. Even though the condition is not

satisfied, or the measurements are corrupted with noise, this

method performs well by using re-weighted �1-norm mini-

mization technique [16].

The rest of the paper is organized as follows. Problem

formulation is given in Section 2. In Section 3, we reformu-

late the identification problem as an �0-norm optimization

problem, and utilize �1-norm minimization method to solve

this problem approximately. To verify the performance of

algorithm proposed in Section 3, we demonstrate some sim-

ulations in Section 4. Some conclusions are presented in

Section 5.

2 Problem Formulation

Consider the Wiener system expressed by the block dia-

gram shown in Figure 1. The nonlinearity part of the system
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Fig. 2: Nonlinearity

is defined by a static piece-wise linear function:

f(v) =

⎧⎪⎨
⎪⎩

c+v + b+, if v > d+

0, if − d− ≤ v ≤ d+

c−v + b−, if v < d−
, (1)

which is shown in Figure 2. Here we assume that d− < d+,

both c+ and c− are nonzero.

Let the linear subsystem be described by a moving aver-

age (MA) model:

vk = C(z)uk, (2)

where

C(z) = 1 + c1z + c2z
2 + · · ·+ cqz

q,

and z is a time delay operator, that is zu(k) = u(k − 1).
Here we assume the order q of linear subsystem is known.

The nonlinear output yk is observed with additive noise εk,

that is

zk = yk + εk. (3)

The parameters contained in linear subsystem and piece-

wise nonlinear function are unknown. The identification

problem is how to estimate parameters c+, c−, d+, d−, b+,

b−, ci, i = 1, · · · , q based on the observations {zk}Nk=1 and

{uk}Nk=1.

Remark 1. As shown in Fig.2, we notice the nonlinear sub-

system is consisted of three linear blocks, and the outputs of

these blocks are overlapped. Hence, our model is more gen-

eral than that in [4], [6] and [17]. In addition, to estimate d+

and d−, the methods proposed in these paper are not avail-

able since all of them need the assumption that the outputs

of different linear block are disjoint.

3 Main results

In this section, we present our main results of this paper.

We begin with an observation that identification problem can

be reformulated as a sparse optimization problem. Instead

of solving this problem directly, we use �1-norm convex re-

laxation to approximate the solution. Then we present an

algorithm to estimate the parameters. Throughout the first

three subsections, we assume the measurements are noise-

free, that is zk = yk. The noisy measurements case is dis-

cussed in Section 3.4 and Section 3.5.

3.1 Sparse Optimization Method
In this subsection, we transform the identification prob-

lem into a sparse optimization problem. Firstly, we rewrite

the system as a linear regression form with respect to coef-

ficients of linear subsystem and products of coefficients in

both nonlinear and linear functions. Then, the outputs of

system are exactly lying in three hyperplanes, and the iden-

tification problem is equivalent to estimating the coefficients

of hyperplanes. Finally, we proposed a sparse optimization

method to solve it.

According to (2), substituting the output vk of MA sub-

system into (1) implies

yk =

⎧⎪⎨
⎪⎩

c+uk + · · ·+ c+cquk−q + b+, if vk > d+

c−uk + · · ·+ c−cquk−q + b−, if vk < d−

0, otherwise

. (4)

Now, we rewrite (4) as a compact form

yk =

⎧⎪⎨
⎪⎩

θT1 φk, if vk > d+

θT2 φk, if vk < d−

0, otherwise

, (5)

where

θT1 � [c+, c+c1, · · · , c+cq, b+], (6)

θT2 � [c−, c−c1, · · · , c−cq, b−], (7)

φT
k � [uk, uk−1, · · · , uk−q, 1]. (8)

Here, θ1 and θ2 are unknown parameters, and all but the

last component of φk are input signals, which can be de-

signed. When θ1 and θ2 are identified, estimation of

c+, c−, b+, b−, ci, i = 1, · · · , q are followed from (6) and

(7) with simple computations. Therefore, in the rest of this

paper, we focus our works on identification of θ1 and θ2.

From (5), notice that each data point (φk, yk) is lying on

one of the three hyperplanes. In other words, data points

{φk, yk}Nk=1 are sampled from three hyperplanes. Hence,

such Wiener system can also be seen as a linear switched

systems, and the switch time are unknown since they depend

on vk, which are also unknown.

We split data set {φk, yk}Nk=1 into three parts according to

which hyperplane they are lying on:

A1 � {k : yk = θT1 φk, 1 ≤ k ≤ N},
A2 � {k : yk = θT2 φk, 1 ≤ k ≤ N},
A3 � {k : yk = 0, 1 ≤ k ≤ N},

and N1, N2, N3 are their corresponding cardinality num-

bers. Note that A1 and A2 are unknown, but A3 is known.

Without loss of generality, suppose that N1 > N2 and set

N
.
= N −N3 , otherwise we can delete data points lying on

hyperplane y = 0. Here, a
.
= b means set the value of b to a.

Construct data matrix X and vector Y as follow:

X =
[
φ1, φ2, · · · , φN

]
, Y =

⎡
⎢⎢⎢⎣

y1
y2
...

yN

⎤
⎥⎥⎥⎦ . (9)
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Then, according to (5) and N3 = 0,

‖Y −XT θ1‖0 ≤ N−N1, ‖Y −XT θ2‖0 ≤ N−N2, (10)

where ‖x‖0 is the number of nonzero components of x.

Define an estimation error vector E(θ) depends on θ as

E(θ) = Y −XT θ. It follows from (5) that E(θ1) and E(θ2)
are sparse vectors if N1 and N2 are enough large. Here we

call a vector is sparse if most of its components are zero.

Use the above observations and N1 > N2, we estimate θ1
by solving l0 optimization problem:

θ̂1 = argmin
θ

‖Y −XT θ‖0. (11)

At the same time, the data set A1 is estimated by

Â1 = {k : (Y −XT θ̂1)k = 0},
where (x)k denotes the kth component of x.

In order to estimate θ2, we construct a data matrix XÂc
1

and measurement vector YÂc
1

as

XÂc
1
=

[
φi1 , φi2 , · · · ,

]
, YÂc

1
=

⎡
⎢⎣
yi1
yi2
...

⎤
⎥⎦ , (12)

where ij ∈ {1, 2, · · · , N} − Â1. Now, θ2 is estimated by

solving l0 optimization problem:

θ̂2 = argmin
θ

‖YÂc
1
−XT

Âc
1

θ‖0, (13)

and the estimation for data set A2 is

Â2 = {k : (Y −XT θ̂2)k = 0}.
From (11) and (13), notice that the methods to estimate θ1
and θ2 are similar. Therefore, most of our analysis in the

following can be extended to θ2 directly.

3.2 A Sufficient Condition
In this subsection, we introduce some basic notions and

results about compressed sensing and deduce sufficient con-

ditions for recovering θ1 and θ2 by solving �0-norm opti-

mization problems (11) and (13) respectively.

Definition 1 (Spark). The spark of a matrix Φ ∈ R
m×n is

defined as

spark(Φ) = min
x∈N (Φ)\0

‖x‖0.

The spark(Φ) is also seen as the smallest number of

columns of Φ that are linear dependent. Recall that rank(Φ)
is the maximal number of columns from Φ that are linear

independent. It turns out that spark(Φ) ≤ rank(Φ) + 1,

and the following example show that spark(Φ) can be much

smaller than rank(Φ). However, when Φ is a random matrix,

e.g. all the entries of Φ are sampled from Gaussian random

variables with independent identical distribution, the equal-

ity holds almost surely(a.s.) [18].

Example 1. Let

A =

⎡
⎢⎢⎢⎣

1
0
...

I
0

⎤
⎥⎥⎥⎦

where I is a p× p identity matrix. Then spark(A) = 2, but

rank(A) = p.

Definition 2 (Mutual coherence). The mutual coherence

μ(Φ) of a matrix Φ ∈ R
m×n is the largest absolute value

of the cross-correlations between the columns of Φ:

μ(Φ) = max
1≤i<j≤n

|〈ai, aj〉|
‖ai‖2‖aj‖2 ,

where ai is the ith column of Φ, and without loss of gener-

ality, we assume that all the columns of Φ are nonzero.

Notice that μ(Φ) measures the smallest angle between any

two columns of Φ. Both spark(Φ) and μ(Φ) can be seen as

metrics to measure how rich the data contained in columns

of Φ. The smaller μ(Φ) is (or the larger spark(Φ) is), the

richer the data is. A relationship between these two metrics

are below.

Lemma 1 (see [19]). For any matrix Φ, it holds that

spark(Φ) ≥ 1 +
1

μ(Φ)
.

Without loss of generality, assume that XT is a full col-

umn rank matrix (data set is sufficient large). Since Y =
XT θ1 + E(θ1), if we can determine E(θ1), then θ1 =
(XXT )−1X(Y − E(θ1)). This problem is also known as

decoding in coding theory [20], where θ1 is plaintext, XT θ1
is ciphertext. The receiver observes XT θ1 with an additive

sparse noise E(θ1), and wishes to recover θ1 when X and Y
are known.

Now, we give our first result on recovering θ1 by solving

a l0 optimization problem.

Theorem 1. If there exists a matrix Φ such that ΦXT = 0
and satisfies spark(Φ) > 2(N − N1), then �0-norm opti-
mization (11) recovers θ1 exactly.

Proof. By contradiction. Assume the solution of (11) is θ̂
and θ1 �= θ̂. Since ‖E(θ1)‖0 ≤ N −N1 and θ̂ is the optimal

solution, ‖Y −XT θ̂‖0 ≤ N −N1. Let Ê = Y −XT θ̂, then

E(θ1) �= Ê because XT is full column rank and θ1 �= θ̂.

And it follows from ΦXT = 0 that ΦE(θ1) = ΦY and

ΦÊ = ΦY . Hence, Φ(E1 − Ê) = 0. However, ‖E1‖0 ≤
N−N1 and ‖Ê‖0 ≤ N−N1 implies ‖E1−Ê‖0 ≤ ‖E1‖0+
‖Ê‖0 ≤ 2(N −N1), which is contradicted to the hypothesis

spark(Φ) > 2(N −N1).

Remark 2. A simple choice of Φ is I − XT (XXT )−1X .

Since all the entries except the last columns of X can be de-

signed, we can make spark(Φ) large. For example, when

the input signals {uk} are sampled independently from ran-

dom variables with Gaussian distribution, then spark(Φ) is

approximately N − q − 2 [21].

Let θ̂1 be the solution to (11), then the parameters

c+, b+, c1, · · · , cq are estimated by

ĉ+ = (θ̂1)1, b̂
+ = (θ̂1)q+2, ĉi =

(θ̂1)i+1

ĉ+
, i = 1, · · · , q,

(14)

where (θ̂1)j denotes the jth component of θ̂1. Now we pro-

vide an estimation of d+. Let the input signals uk be i.i.d.
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Gaussian random variables N (0, σ2
u), then the outputs v(k)

of linear subsystem is a Gaussian stationary with distribu-

tion N (0, σ2
v) [22], where σ2

v = (1+ c21+ · · ·+ c2q)σ
2
u. With

this observation, we estimate d+ according to the probability

P(vk > d+), which is approximately equal to
|Â1|

N+N3
, where

|A| denotes the cardinality of set A. Hence, an estimator d̂+

of d+ is given follow by solving a generalization equation:

1−G(
d̂+

σv
) =

|Â1|
N +N3

, (15)

where G(x) � 1√
2π

∫ x

−∞ e−
t2

2 d t.

Remark 3. Notice that Gaussian distribution G(x) is a

strictly increasing function, thus, the solution d̂+ to equation

(15) is unique. By Law of large number,
ˆ|A|1

N+N3
= |A1|

N+N3
→

P(vk > d+) a.s. as N → ∞. Hence, d̂+ → d+ a.s. as

N → ∞, and the accuracy of estimation d̂+ heavily depends

on the number of data points.

Corollary 1. Under the condition of Theorem 1, the estima-
tions given in (14) are exactly equal to their true values.

Although we recover parameters by solving �0-norm opti-

mization problem, it is intractable and NP hard. In the next

subsection, we use �1-norm convex relaxation technique to

recover parameters, which can be realized by a computa-

tional efficient algorithm.

3.3 �1-norm Convex Optimization Method
The �0-norm optimization problems (11) and (13) are

combinatorial non-convex optimization and unsolvable us-

ing polynomial time algorithms. Inspired by compressed

sensing theory [20], a common used method is replacing �0-

norm by �1-norm. This technique makes the optimization

convex, and the sparsity character of �0-norm is retained.

The following lemma states that under some conditions,

�1-norm optimization problem is equivalent to the intractable

�0-norm optimization problem.

Lemma 2 (see Theorem 7 of [23]). If Φx = y and

‖x‖0 <
1

2
(1 +

1

μ(Φ)
), (16)

then the following two optimization problems are equivalent:

min ‖x‖0 subject to Φx = y (17)

min ‖Wx‖1 subject to Φx = y (18)

where W � diag(w(1), · · · , w(N)) is a diagonal matrix
and the ith diagonal entry w(i) � ‖φi‖2, φi is the ith col-
umn of Φ. Furthermore, the solution is unique.

Now we utilize this lemma to obtain a sufficient condition

for recovering unknown parameters using �1-norm optimiza-

tion method.

Theorem 2. If there exists a matrix Φ satisfies ΦXT = 0
and

N −N1 <
1

2
(1 +

1

μ(Φ)
), (19)

then E(θ1) is the solution to �1-norm optimization problem:

min
E

‖WE‖1 subject to ΦE = ΦY, (20)

where W is defined in Lemma 2. Furthermore, θ1 is also
recovered.

Proof. It follows directly from Lemma 2 that E is exactly

recovered by solving (20), where x and y are replaced by E
and ΦY respectively. The full column rank property of XT

guarantees the solution to XT θ = Y −E(θ1) is unique, that

is θ1 = (XXT )−1X(Y − E(θ1)).

Remark 4. Determining the mutual coherence μ(Φ) costs

a great deal of computations [24], and is actually a NP

hard problem. With the intuition of Lemma 1, we ap-

proximate 1 + 1
μ(Φ) by spark(Φ). When Φ is selected as

I −XT (XXT )−1X , a rough approximation of 1 + 1
μ(Φ) is

N − q − 2.

The above approach can be directly applied to estimation

of θ2 and c−, b−. Recall the notations introduced in Section

3, since we recover θ1 exactly, Â1 = A1, so XÂc
1
= XAc

1

and YÂc
1
= YAc

1
. For simplification, denote X2 = XAc

1

and Y2 = XAc
1
. Set E2 = Y2 − XT

2 θ2. Then, the follow-

ing theorem concludes that E2 can be recovered under some

conditions.

Theorem 3. If there exists a matrix Ψ satisfies ΨXT
2 = 0

and
N −N1 −N2 <

1

2
(1 +

1

μ(Ψ)
), (21)

then E2 is the unique solution to �1-norm optimization prob-
lem:

min ‖ME‖1 subject to ΨE = ΨY2, (22)

where M � diag(m(1), · · · ,m(N − N1)) is a diagonal
matrix and the ith diagonal entry m(i) � ‖ψi‖2, ψi is the
ith column of Ψ.

Proof. The proof is similar to the argument in Theorem 2,

so we omit it here.

Remark 5. Note that the condition (21) always holds under

the assumption that N3 = 0. In other words, in the noiseless

measurements case, if we can recover θ1, then θ2 is recover-

able as well. In the next section, we will consider the noisy

measurements case, this assumption doesn’t hold any longer.

3.4 Noisy Measurements
We turn to the problem that output yk is corrupted by

additive Gaussian noise εk, that is, the observations are

zk = yk + εk.

The assumption that A3 is known becomes invalid in this

case. A simple method to estimate it is Â3 = {k : |yk| ≤
δσ2}, where σ2 is the variance of noise and δ ∈ (0, 1]. If

σ2 is much smaller than the magnitude of most of yk in A1

and A2, then Â3 contains a few indexes belong to A1 and

A2, and most of indexes belong to A3 remain in Â3. To

reduce the influence of noise on estimating parameters, we

use a common approach called �2-norm regularization:

min
θ,E

1

2
‖E‖22+γ‖WE(θ)‖1, subject to E(θ) = Z−XT θ−E ,

(23)

where data matrices are defined as

X = [φi1 , φi2 , · · · ], Z = [zi1 , zi1 , · · · ]T (24)
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for all ij ∈ {1, · · · , N} \ Â3 and W is a diagonal weighted

matrix with positive diagonal entries. The first term of ob-

jective function make the magnitude of E be small and the

second term encourage E(θ) to be sparse. Here we intro-

duce a regularization parameter γ to balance the sparsity of

Y − XT θ1 and the magnitude of noise {εk}. A discussion

about how to select γ is presented in [25].

Remark 6. In the case where N1 � N2, the above convex

optimization problem (23) is motivated to estimate θ1, and

the program for identifying θ2 is similar to (23) except slight

modification, where X and Z are replaced by XÂc
1

and ZÂc
1

respectively.

3.5 Enhance Sparsity via Re-weighted �1-norm Mini-
mization

When the outputs yk are corrupted with noise, Z −XT θ1
is not sparse. It is still possible to estimate effectively

Z −XT θ1 via a technique called re-weighted �1-norm min-

imization [16].

For the noise-free case, a weighted �1-norm minimization

problem is formulated as:

min
E

‖W̄WE‖1, subject to ΦE = ΦY, (25)

where W̄ = diag(w̄(1), · · · , w̄(N) is a weighted matrix,

and W is another weighted matrix defined in Lemma 2. The

functions of W̄ and W are different. The former one can

be seen as some prior knowledge about the locations of sup-

ports. In this way, one assigns small weights to the com-

ponents that are nonzero with high probability, otherwise,

assign large weights. For example, if we known that y(k) is

generated by θT1 φ(k), then (E(θ1))k must be 0, so we select

a large weight w̄(k). The latter one is motivated to balance

the difference of magnitudes of column vectors of Φ. For the

noisy case, a similar method is

min
θ,E

1

2
‖E‖22 + γ‖W̄WE(θ)‖1

subject to E(θ) = Z −XT θ − E .
Even though there is no prior knowledge about the locations

of supports, we can use an iterative algorithm, and recon-

struct the weighted matrix W̄ based on the estimation of pre-

vious step, which is shown in Algorithm 1.

To summarize the results of this section, we propose a re-

weighted l1 minimization algorithm (see Algorithm 1) to es-

timate c+, b+, d+, c1, · · · , cq with noisy measurements.

4 Simulations

In this section, we give numerical examples to demon-

strate that our identification method recover unknown pa-

rameters in linear and nonlinear subsystem with overwhelm-

ing probability in the noise-free case. In addition, we also

show that Algorithm 1 performs well in the noisy case. To

solve convex optimization problem in this algorithm, we use

CVX, a package for specifying and solving convex programs

[26].

Let the nonlinear subsystem be described by

f(v) =

⎧⎪⎨
⎪⎩

0.4v − 0.6 if v > 0.4

0 if − 0.6 ≤ v ≤ 0.4

0.85v + 0.7 if v < −0.6

Algorithm 1 Identification via re-weighted �1-norm mini-

mization

Input: Sample data: {u(k), y(k)}Nk=1, maximum iterative num-

ber lmax, variance σ2, small positive numbers ε, δ, η.

Initialization: iterative counter l = 0; Estimate Â3
.
= {k :

|yk| ≤ δσ2}, N3
.
= |Â3|; construct X and Z as (24); Φ

.
= I −

XT (XXT )−1X , w(i)
.
= ‖φ(i)‖2, and φ(i) is the ith column

of Φ, w̄0(i)
.
= 1 and W

.
= diag(w(1), · · · , w(N)), W̄0

.
=

diag(w̄0(1), · · · , w̄0(N)).
while l < lmax do

Solve re-weighted �1-norm minimization problem:

min
θ,E

1

2
‖E‖22 + γ‖W̄lWE(θ)‖1,

subject to E(θ) = Z −XT θ − E .

Update the weights: for each i = 1, · · · , N −N3,

w̄l+1(i)
.
=

1

|(E(θl))i|+ η
,

and

W̄l+1
.
= diag(w̄l+1(1), · · · , w̄l+1(N −N3)),

where η is a small positive number used to avoid the denomi-

nator being zero.

end while
Estimation: θ̂1

.
= θlmax ; Â1

.
= {k : |(Z −XT θ̂1)k| < ε};

Identification:

ĉ+
.
= (θ̂1)1, b̂

+ .
= (θ̂1)q+2, ĉi

.
=

(θ̂1)i+1

ĉ+
, i = 1, · · · , q,

and solve equation (15) for d̂+.

Table 1: Percentage of recovering θ1 versus N1/(N − N3)
via Algorithm 1 in noise-free case

N1
N−N3

(%) 50 53 56 59 62

recover(%) 85 93 97 100 100

and the linear subsystem (q = 4) be described by

vk = uk + 0.81uk−1 + 0.61uk−2 − 0.2uk−3 − 0.45uk−4.

The excitation input {uk} are independent identical Gaus-

sian random variables with distribution N (0, 2)
In the first experiment, we verify the ability of l1 opti-

mization method to recover θ1 when εk = 0. According

to Theorem 2 and Remark 4, if N1 is roughly larger than

N − 1
2 (N − q − 2) = 53, Algorithm 1 may recover θ1 with

overwhelming probability. We design the experiment: let

N = 100, fix N1, and run Algorithm 1 for 100 times, then

compute the percentage of recovering θ1 successfully. Set

η = 0.1, the simulation results are shown in Table 1, which

are in accordance with our assertions.

In the second experiment, we test the performance of Al-

gorithm 1 for the noisy measurements case. Let εk be Gaus-

sian white noise with distribution N (0, 0.12). Set η = 0.1,

δ = 0.5, lmax = 10, γ = 0.01. Fix the percentage of N1,

we average the estimation values of c+, b+, d+, ci, i = 1,

· · · , q for 100 times by using Algorithm 1. The results are
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Table 2: Estimation values of c+, b+, d+, ci, i = 1, · · · , q
for different percentage N1/N in noisy measurements case

via Algorithm 1

N1
N

(%) 55 58 60 65 True value

ĉ+ 0.36 0.38 0.39 0.39 0.40

b̂+ -0.46 -0.53 -0.54 -0.58 -0.60

d̂+ 0.25 0.31 0.33 0.36 0.40

ĉ1 0.82 0.82 0.80 0.81 0.80

ĉ2 0.64 0.62 0.60 0.61 0.61

ĉ3 -0.21 -0.20 -0.19 -0.20 -0.20

ĉ4 -0.48 -0.47 -0.44 -0.46 -0.45

presented in Table 2. As seen, all the estimation values ex-

cept d̂+ are closely to true values. This phenomenon is in

accordance with Remark 3, where we state that the estima-

tion accuracy of d+ heavily depends on the number of data

points, and N = 100 is small in our experiment.

5 Conclusions

In this paper, we discuss a new approach to the identifica-

tion of Weiner system with nonlinearity being a piece-wise

linear function. When the measurements are noise-free, we

first show that sparse optimization method can recover the

unknown parameters contained in linear and nonlinear sub-

systems under some conditions. Since solving �0-norm op-

timization is still intractable, we use �1-norm convex relax-

ation and re-weighted �1-norm minimization to tackle this

NP hard problem. When the measurements are corrupted

with noise, we use �2-norm regularization technique to deal

with the noise. For further research, it is of interest to relax

the conditions for recovering parameters, and consider some

more general linear and nonlinear subsystems in the Wiener

model.
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